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Executive Summary

Smart data distribution is a core component in the AUTOWARE communications and data
management framework, as it implements the logic of a control plane for cognitive data
distribution across all communication layers of AUTOWARE architecture, is based on the
available communication technologies and is supporting the needs of the higher level
services and applications. Task 2.4 investigates novel smart data distribution solutions
which cooperate with cloud-based service provisioning and communication technolo-
gies. The solutions presented in D2.4 determine when it is appropriate to move data
towards locations where services can be provided. In this context, AUTOWARE exploits
storage and computation resources on various elements of the industrial network. AU-
TOWARE decentralized data management and distribution proposals also contribute to-
wards the design of automation processes that are more capable to dynamically recon-
figure. To achieve these objectives, the designed data management and distribution
schemes provide distributed methodologies and smart algorithms.

T2.4 started at M7 of AUTOWARE with a thorough investigation of the state of the art on
novel smart data distribution solutions that cooperate with cloud-based service provision-
ing and communication technologies in industrial IoT networks. Typically, in industrial IoT
networks, data generated by monitoring IoT devices are collected, elaborated and sent
to controllers and actuators. We concluded that, in the vast majority of the proposed
solutions, centralized schemes are used. More specifically, the data are transferred to a
central network controller, from where they are accessed by any other industrial node
requiring them. Since the routing of data from IoT sensors to actuators is an integral part
for maintaining critical delay requirements, this data distribution pattern, although robust,
may result in significant overheads and severely suboptimal resource consumption. Ad-
ditionally, the potential inflexibility of this pattern in large scale networks, as well as in dy-
namic conditions might lead to negative effects in the network, ranging from losing data
to missing critical deadlines and consuming higher amounts of energy than needed.

The AUTOWARE smart data distribution component is decentralized, dynamic and hi-
erarchical, so as to support cooperation with cloud-based service provisioning and com-
munication technologies. More specifically, at first, T2.4 provides decentralized data dis-
tribution among the various nodes of the AUTOWARE ecosystem. This decentralization is
targeting the efficient management of massive data generation and consumption and
the exploitation of resources available locally at individual nodes. Then, it copes with dy-
namically changing network parameters by employing adaptive data placement and
replication techniques. Finally, it provides a hierarchical data management, by employ-
ing a mix of centralized and decentralized control processes and a hierarchy of data
managers. D2.4 addresses three core issues and presents the corresponding key techni-
cal contributions: (i) testing of the overall concept, by considering a flat network topol-
ogy, (ii) hard data access latency deadlines, and exploitation of the presence of fog
nodes, and (iii) dynamic network reconfigurations. Those contributions are validated by
both large-scale simulation models and real-world results on an experimental testbed.

As a first technical contribution for T2.4, and in order to address the aforementioned
shortcomings, we introduce the novel concept of a distribute Data Management Layer
(DML), whereby nodes can cooperate so as to store data within the network. In its full
potential, the DML is decoupled yet able to interact with the underlying network plane.
For example, given a set of data, the sets of nodes generating and requesting them,
and a maximum access delay that requesting nodes can tolerate, the DML is able to
efficiently identify a limited set of proxies in the network where data are stored. Given
the mentioned constraints, we conduct an initial investigation and simulations so as to
test the validity of the DML concept. From the technological point of view, even though
multiple alternatives can be taken into account, we have primarily focus on communi-
cation technologies which can potentially support IEEE 802.15.4e, due to its flexibility and
due to the fact that it is becoming a de-facto standard in the sector. We address the
(computationally difficult) problem of finding which network nodes to select as proxies
and we propose a simple method to solve it. We demonstrate, via simulations of large
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scale industrial IoT networks, that the proposed method (i) guarantees that access delay
stays below the given threshold, and (ii) significantly outperforms centralized and even
distributed approaches, both in terms of access latency and in terms of maximum la-
tency guarantees. Through those findings, we verify that the DML concept can be more
than useful in industrial IoT networks, and we obtain a roadmap for the continuation of
T2.4. As a result, during M12-M18, we extended this technical contribution in two ways.

At first, we address the problem of the maximization of the network lifetime, given
the proxy locations in the network, the initial limited energy supplies of the nodes, the
data request patterns (and their corresponding parameters), and the maximum latency
that consumer nodes can tolerate since the time they request data. We prove that the
problem is computationally hard and we design an offline centralized heuristic algorithm
for identifying which paths in the network the data should follow and on which proxies
they should be cached, in order to meet the latency constraint and to efficiently pro-
long the network lifetime. We implement the method and evaluate its performance us-
ing an FIT IoT-LAB testbed, comprised of IEEE 802.15.4-enabled WSN430 network nodes.
We demonstrate that the proposed heuristic guarantees data access latency below the
given threshold, and performs well in terms of network lifetime with respect to a theoreti-
cally optimal solution.

Then, we focus on maintaining the network configuration in a way such that applica-
tion requirements are met after important network operational parameters change due
to some unplanned events (e.g., heavy interference, excessive energy consumption),
while guaranteeing an appropriate use of node energy resources. We provide several
efficient algorithmic functions which reconfigure the paths of the data distribution pro-
cess, when a communication link or a network node fails. Those functions regulate how
the local path reconfiguration should be implemented and how a node can join a new
path or modify an already existing path, ensuring that there will be no loops. We demon-
strate through simulations the performance gains of the designed method in terms of
energy consumption and data delivery success rate.
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1 Introduction

1.1 Background

Usually, in large-scale industrial networks (Fig. 1), the acquired data is transferred to a
central network controller using wireless or wired links [1]. The controller analyses the re-
ceived information and, if needed, changes the behavior of the physical environment
through actuator devices [2]. However, routing the data centrally, as well as imposing
data transfers back and forth in the network may lead to severely sub-optimal paths [3],
which in turn negatively affect the overall network latency. The fact that automation
control may span multiple physical locations and include heterogeneous data sources
also pushes towards decentralization. Moreover, the adoption of Internet of Things tech-
nologies with the associated massive amounts of generated data makes decentralized
data management inevitable [4]. Cloud technologies are considered a great opportu-
nity to implement different types of data-centric automation services at reduced costs,
but deploying control-related services in clouds poses significant challenges such as loss
of control, delays and jitters. Consequently, data-centric operations and decentraliza-
tion are two fundamental cornerstones of modern industrial automation technologies,
according to the paradigms of Industry 4.0 and form the basis for decision making and
control operations. On the other hand, the use of statistical data analysis (Big Data) tech-
niques for control is well established, and several approaches have been proposed to
optimize data management and distributed processing, yet smart data distribution poli-
cies that take care of replicating data to locations from where they can be accessed
when needed within appropriate deadlines, are still to be investigated.

Edge computing, also referred to as fog computing, implements technical features
that are typically associated with advanced networking and can satisfy those require-
ments [5]. Fog computing differs from cloud computing with respect to the actual soft-
ware and hardware realizations as well as in being located in spatial proximity to the data
consumer (for example the user could be a device in the industrial IoT case). In particu-
lar, components used to realize the fog computing architecture, can be characterized by
their non-functional properties. Such non-functional properties are for example, real-time

Figure 1: A typical industrial network setting.
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behavior, reliability, and availability. Furthermore, fog nodes can follow industry-specific
standards (e.g., IEEE 802.15.4e [6] or WirelessHART [7]) that demand the implementation
as well as verification and validation of software and/or hardware to follow formal rules.

1.2 Distributed data management

Distributed data management, a key component of fog computing, can be a very suit-
able approach to cope with these issues [8]. In the context of industrial networks, one
could leverage the set of nodes present at the edge of the network to distribute func-
tions that are currently being implemented by a central controller [1]. Many flavors of dis-
tributed data management exist in the networking literature, depending on which edge
devices are used. In the context of AUTOWARE, we introduce a decentralized data distri-
bution, and we use the multitude of sensor nodes present in an industrial physical environ-
ment (e.g., a specific factory) to implement a distributed data management whereby
sensor nodes cache data they produce, and provide these data to each other upon
request. In this case, the choice of the sensor nodes where data are cached must be
done to guarantee a maximum delivery latency to nodes requesting those data.

The AUTOWARE smart data distribution component is a technological building block
spanning all layers from field devices to cloud. It is based on a hierarchical set of dis-
tributed entities related to software developers, technology providers, as well as integra-
tors. It implements the logic of a control plane for cognitive data distribution across all
the communication layers (field, workcell, factory, enterprise), based on the available
communication technologies and supporting the needs of the higher-layer services and
applications. As shown in Fig. 2a, at the logical layer, Data Managers (DM) decide where
data is replicated, moved, and stored. Each DM decides which decisions can be taken
autonomously by individual nodes embedding cognitive functions based on the require-
ments of the specific application and supports complete decentralization of functionali-
ties to individual nodes. It also implements the logic of a control plane for cognitive data
distribution. As shown in Fig. 2b, it considers a set of “pipes” where data flows. The control
plane decides trough which nodes the “pipes” should pass and through which underlying
communication and networking primitives the data should flow. Different types of data-
oriented automation functions at reduced costs can be implemented, like interactions
with external data providers or requestors, inter-cell data distribution planning and man-
agement and coordination of the DMs. The core data management functions are shown
in Fig. 3, where at the same time, the positioning with respect to also the communications
management functions developed in T2.3 is visible.

The AUTOWARE smart data distribution component is decentralized, dynamic and hi-
erarchical, so as to support cooperation with cloud-based service provisioning and com-
munication technologies. More specifically, at first, T2.4 provides decentralized data dis-
tribution among the various nodes of the AUTOWARE ecosystem. This decentralization is
targeting the efficient management of massive data generation and consumption and
the exploitation of resources available locally at individual nodes. Then, it copes with dy-
namically changing network parameters by employing adaptive data placement and
replication techniques. Finally, it provides a hierarchical data management, by employ-
ing a mix of centralized and decentralized control processes and a hierarchy of data
managers. D2.4 addresses three core issues and presents the corresponding key techni-
cal contributions: (i) testing of the overall concept, by considering a flat network topol-
ogy, (ii) hard data access latency deadlines, and exploitation of the presence of fog
nodes, and (iii) dynamic network reconfigurations. Those contributions are validated by
both large-scale simulation models and real-world results on an experimental testbed.

1.3 A small scale proof of concept at IK4-TEKNIKER

Before proceeding to large-scale experimental solution testing through testbed and sim-
ulations in the context of T2.4, we designed and implemented an protorype proof of

H2020-EU 2.1.1. Ref 723909 - Page 7 / 43



Deliverable D2.4

(a) Control Plane.

(b) User Plane.

Figure 2: AUTOWARE hierarchical communication and data management architecture.

Figure 3: Different AUTOWARE communication and data management functions.
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concept, so as to verify the applicability of distributed data management in industrial
environments. In order to demonstrate how we can apply the data management con-
cepts in prototype industrial environments and showcase their feasibility, we designed
and implemented a small scale demonstration at the premises of IK4-Tekniker. The core
of the concept is regarding how we can use smart data distribution at the IK4-Tekniker
industrial facilities so as to achieve: (i) cost-effective operations, (ii) fault tolerance, (iii)
dynamic, plug&play smart data distribution solutions.

A typical scenario at IK4-Tekniker is shown in Fig. 4a. A mobile robot is responsible for
fetching objects to a robotic bi-manipulator. The objects are located at a set of shelves,
where a human operator is responsible for manually loading the objects on the mobile
robot. Both the robot and the operator are aware of which object is currently needed at
the bi-manipulator, as there is a centralized wireless or wired communication infrastruc-
ture, coordinated by a central controller and the data can be sent and received through
the communication links. However, due to the harsh conditions in several industrial envi-
ronments, it is not unusual for the main centralized operational network to go offline, for
a variety of reasons. When there is a situation like this in the current scenario, the mobile
robot and human operator cannot be aware of which object is currently needed at the
bi-manipulator, which in turn results in a failure of the production process.

In order to address this problem, we suggested the adoption of a distributed data
management approach. More specifically, we employed a secondary, lightweight data
distribution layer and implement it by using small, low-cost wireless sensor motes. The
proof of this concept was showcased by placing three motes in the network as shown
in Fig. 4b, one on the bi-manipulator, one on the mobile robot and one on the set of
shelves. The motes used were IEEE 802.15.4 enabled, a fact that renders them compatible
with typical industrial networking protocols, such as IEEE 802.15.4e and WirelessHART. This
demonstration is proving that with low-cost we can achieve high fault tolerance and
reliability.

1.4 Roadmap

In Section 2, we provide an overview of the state of the art. In Section 3, we introduce the
Data Management Layer (DML), which operates independently from and complements
the routing process of industrial IoT networks. Assuming that applications in such networks
require that there is (i) a set of producers generating data (e.g., IoT sensors), (ii) a set of
consumers requiring those data in order to implement the application logic (e.g., IoT ac-
tuators), and (iii) a maximum latency Lmax that consumers can tolerate in receiving data
after they have requested them, the DML offers an efficient method for regulating the
data distribution among producers and consumers. The DML selectively assigns a spe-
cial role to some of the network nodes, that of the proxy. Each node that can become
a proxy potentially serves as an intermediary between producers and consumers, even

(a) Centralized network operational. (b) Centralized network not operational.

Figure 4: The proof of concept demonstration at IK4-TEKNIKER.
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though the node might be neither a producer nor a consumer. If properly selected, proxy
nodes can significantly reduce the access latency; however, when a node is selected as
a proxy, it has to increase its storing, computational and communication activities. Thus,
the DML minimizes the number of proxies, to reduce as much as possible the overall sys-
tem resource consumption1.

In Section 4, we consider the problem of network lifetime maximization, given the proxy
locations in the network, the initial limited energy supplies of the nodes, the data request
patterns (and their corresponding parameters), and the maximum latency that consumer
nodes can tolerate since the time they request data. We prove that the problem is com-
putationally hard and we design an offline centralized heuristic algorithm for identifying
which paths in the network the data should follow and on which proxies they should be
cached, in order to meet the latency constraint and to efficiently prolong the network
lifetime. We implement the method and evaluate its performance using an FIT IoT-LAB
testbed [10], comprised of IEEE 802.15.4-enabled WSN430 network nodes. We demon-
strate that the proposed heuristic (i) guarantees data access latency below the given
threshold, and (ii) performs well in terms of network lifetime with respect to a theoretically
optimal solution.

Another typical problem of entirely centralized and offline computations regarding
data distribution scheduling, is that they can become inefficient in terms of energy, when
applied in industrial IoT networks. In industrial environments, the topology and connectiv-
ity of the network may vary due to link and sensor-node failures [11]. Also, as a result of
factory reconfigurations required in the Industry 4.0 framework, very dynamic conditions
which make communication performance much different from when the central sched-
ule was computed, possibly causing sub-optimal performance, may result in not guar-
anteeing application requirements. These dynamic network topologies may cause a
portion of industrial sensor nodes to malfunction. With the increasing number of involved
battery-powered devices, industrial IoT networks may consume substantial amounts of
energy; more than would be needed if local, distributed computations were used.

In Section 5 we focus on maintaining the network configuration in a way such that
application requirements are met even if important network operational parameters
change due to some unplanned events (e.g., heavy interference, excessive energy con-
sumption), while guaranteeing an appropriate utilization of energy resources. We provide
several efficient algorithmic functions which locally reconfigure the paths of the data dis-
tribution process, when a communication link or a network node fails. The functions regu-
late how the local path reconfiguration should be implemented and how a node can join
a new path or modify an already existing path, ensuring that there will be no loops. The
proposed method can be implemented on top of existing data forwarding schemes de-
signed for industrial IoT networks. We demonstrate through simulations the performance
gains of our method in terms of energy consumption and data delivery success rate.

1Note that, the coherency of data that reside on proxies can be achieved in a variety of ways [9], and is
beyond the scope of this work.
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2 State of the art

2.1 Proxies in industrial networks

Traditionally, industrial application systems tend to be entirely centralized. For this rea-
son, distributed data management has not been studied extensively in the past, and the
emphasis has been put on the efficient computer communication within the industrial en-
vironment. The reader can find state of the art approaches on relevant typical networks
in [4], [12] and [13].

Although distributed data management can provide a new set of approaches for
industrial applications, similar concepts have been used in some networking fields. For
example, in the field of Content Distribution Networks, authors of [14] have proposed
SCAN. SCAN utilizes an underlying distributed object routing and location system, which
combines dynamic replica placement with a self-organising application level multicast
tree to meet client QoS and server resource constraints. Proxy placement has been a
usual research topic in various fields. Some representative fields are Information Retrieval
over the Internet [15], Content Distribution Networks [16] and Multimedia Streaming [17].
In most of the cases, proxies can significantly improve metrics such as system resources,
traffic patterns, data segmentation, etc. However, the solutions proposed to date are
not suitable for the industrial environments due to the different constraints, optimization
objectives and technological implementations.

2.2 Latency guarantees

Some interesting related works are the following: In [18], the authors present a central-
ized routing method, and, consequently, they do not use proxies. In [19], the authors
address a different optimization objective, focusing on minimizing the maximum hop dis-
tance, rather than guaranteeing it as a hard constraint. Also, they assume a bounded
number of proxies and they examine only on the worst-case number of hops. Finally, the
presented approach is somewhat graph-theoretic, which makes it hard to apply on real
industrial IoT networks. In [20], the authors present a cross-layer approach which com-
bines MAC-layer and cache management techniques for adaptive cache invalidation,
cache replacement and cache prefetching. Again, the model is different, as we assume
a completely industrial oriented MAC layer, based on, e.g., IEEE802.15.4e, and a different
problem, focusing on the delay aspects, instead of cache management. In [21], the au-
thors consider a different problem that ours: replacement of locally cached data items
with new ones. As the authors claim, the significance of this functionality stems from the
fact that data queried in real applications are not random but instead exhibit locality
characteristics. Therefore, the design of efficient replacement policies, given un under-
lying caching mechanism is addressed. In [22], although the authors consider delay as-
pects and a realistic industrial IoT model (based on WirelessHART), their main objective is
to bound the worst-case delay in the network. Also, they do not exploit the potential pres-
ence of proxy nodes, and consequently, they stick to the traditional, centralized industrial
IoT setting. In [23], the authors consider a multi-hop network organized in clusters and
provide a routing algorithm and cluster partitioning. Our DML concepts and algorithms
can work on top of this approach (and of any clustering approach), for example by al-
locating the role of proxies to cluster-heads. In fact, clustering and our solutions address
two different problems.

2.3 Maximizing the lifetime

The most relevant work regarding lifetime maximization is [24], in which the authors focus
on how to efficiently place the proxies in industrial and content delivery networks, in or-
der to perform well with respect to the data access latency. However, this work does not
consider techniques on how to prolong the network lifetime. There are also a few works in
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the wireless sensor networking field focusing on how to move data to multiple locations,
most of which targeting energy efficient routing to multiple control centers. None of those
works is taking into account neither latency constraints nor deployed proxies. In [25], the
main objective is to maximize the network lifetime by a fair allocation of resources, using
a specific metric of optimality, the lexicographic optimality. In [26], the authors present
a multi-source, multi-consumer model, but they do not provide a source-consumer map-
ping. Consequently, the target objective is fulfilled if all sources successfully propagate
their data to any consumer. In [27], they consider a different energy efficiency target
objective. More specifically, they try to minimize the number of links used in the routing
process by maximizing the overlapping links among source-sink paths. This strategy in our
case could lead to overstressed nodes which in turn lead to reduced lifetime.

2.4 Dynamic reconfigurations

As there are numerous relevant previous works in the literature, we provide some informa-
tion about the most representative and most related ones to this work, which are [24],
[28], [22] and [29]. Although some of those works use proxy nodes for the efficient dis-
tributed management of network data, they all perform path selection computations
centrally. Placement and selection strategies of caching proxies in industrial IoT networks
have been investigated in [24]. Data re-allocation methods among proxies for better
traffic balancing are presented in [28]. Delay aspects in a realistic industrial IoT network
model (based on WirelessHART), and bounding of the worst case delay in the network
are considered in [22]. Reliable routing, improved communication latency and stable
real-time communication, at the cost of modest overhead in device configuration, are
demonstrated in [29]. Different to those works, in the context of AUTOWARE, we present
methods which exploit the local knowledge of the network nodes so as to perform dis-
tributed, local path reconfiguration computations towards more efficient energy dissipa-
tion across the network.

2.5 Motivating examples

Two indicative application areas where the DML and the relevant algorithms could pro-
vide additional value are the following: In [30], the authors present a typical situation
in an oil refinery where miles of piping are equipped with hundreds and thousands of
temperature, pressure, level and corrosion sensors, which are deployed in a large ge-
ographical area. Those sensor motes not only perform industrial condition monitoring
tasks, but they also use the industrial oriented communication technology TSCH. In [31],
the authors present two large-scale deployments of hundreds of nodes; one in a semi-
conductor fabrication plant, and another, on-board an oil tanker in the North Sea. They
use Mica2 and Intel Mote nodes, very similar to our sensor motes of choice. In both those
applications, due to the exact fact that the sensor motes are not able to communicate
directly with the controller (transmission range restrictions), the system designers naturally
consider a multi-hop propagation model. The targeted decentralization of the data dis-
tribution process in those large-scale condition monitoring and predictive maintenance
application areas could lead to economic benefits for the industrial operator and main-
tenance of some important metrics in the network at good levels, while ensuring that the
end-to-end latency is acceptable, without introducing overwhelming costs in the system
for the purchase of expensive equipment.
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3 Average data access latency guarantees

In this section, in order to manage the data distribution process and decrease the av-
erage latency in the network, we introduce the Data Management Layer (DML), which
operates independently from and complements the routing process of industrial IoT net-
works. The main idea behind the DML is decoupling the Network plane from the Data
Management Plane. Fig. 5 depicts the DML high-level functionality. Assuming that appli-
cations in such networks require that there is (i) a set of producers generating data (e.g.,
IoT sensors), (ii) a set of consumers requiring those data in order to implement the appli-
cation logic (e.g., IoT actuators), and (iii) a maximum latency Lmax that consumers can
tolerate in receiving data after they have requested them, the DML offers an efficient
method for regulating the data distribution among producers and consumers. The DML
selectively assigns a special role to some of the network nodes, that of the proxy. Each
node that can become a proxy potentially serves as an intermediary between produc-
ers and consumers, even though the node might be neither a producer nor a consumer.
If properly selected, proxy nodes can significantly reduce the access latency; however,
when a node is selected as a proxy, it has to increase its storing, computational and
communication activities. Thus, the DML minimizes the number of proxies, to reduce as
much as possible the overall system resource consumption2. More specifically, the main
innovations are the following:

• We propose a distributed data management approach to store data on a num-
ber of locations in an industrial environment, as opposed to the current industrial
state-of-the-art approaches where all data are centrally stored and served from a
unique location. We introduce the DML for minimizing the number of proxies in an
industrial IoT network and to reduce as much as possible the overall system resource
consumption.

• We provide a multi-faceted performance evaluation, both through experiments,
and through simulations for achieving scales much larger than what available ex-
perimental conditions allow. At first, we implement the DML with 95 real devices
and evaluate its performance in FIT IoT-LAB testbed [10]. Then, we use the simulation
model, we validate it against the experimental results and we evaluate the DML
performance in larger network sizes and more general topologies.

• We demonstrate that the proposed method (i) guarantees that the access latency
stays below the given threshold, and (ii) significantly outperforms traditional cen-
tralized and even distributed approaches, both in terms of average data access
latency and in terms of maximum latency guarantees.

• We also demonstrate an additional flexibility of the proposed approach by showing
that it can be tuned both to guarantee that the average latency stays below Lmax,
or that the worst-case latency stays below Lmax.

In Section 3.1, we provide the model of the settings we consider, as well as the necessary
notation. In Section 3.2, we introduce the DML and the problem that it addresses. In Sec-
tion 3.3, we evaluate the performance of the DML in comparison with two other methods
used in industrial environments. We also validate the simulation model used afterwards.
In Section 3.4 we present simulation results in scenarios that are not possible to evaluate
with the available experimental testbeds.

3.1 System modeling

The network. We consider networks of industrial IoT devices which usually consist of
sensor motes, actuators and controller devices. We model those devices as a set of

2Note that, the coherency of data that reside on proxies can be achieved in a variety of ways [9], and is
beyond the scope of the current work.
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Figure 5: Decoupling of the Data Management Plane and the Network Plane.

S = {s1, s2, ..., sn} nodes, with a total number of |S| = n nodes, deployed in an area of
interest A. The central network controller C is set as the first device in the network, C = s1.
The communication range ru of a node u depends on the transmission parameters and
the radio propagation conditions of the underlying routing protocol and the constraints of
the technological implementation. Nodes u, v ∈ S are able to communicate with each
other if ru, rv ≥ ε(u, v), where ε(u, v) is the Euclidean distance between u and v.

We assume that the controller C is able to maintain centralized network knowledge.
This is usual in industrial applications, in which the locations of the nodes are known, traffic
flows are deterministic and communication patterns are established a priori. We assume
that C knows all the shortest paths in the network and comes with an n × n matrix D,
where Du,v is the length of the shortest path between nodes u and v3. Note that only
the control of the data management plane is centralized, while, when using the DML,
the data management plane itself is distributed and cooperative, as data are stored on
proxies p ∈ P ⊂ S, which cooperate to achieve the optimal performance of the network
according to the objective function defined next. The network controller C is also serving

3The offline shortest path computation between two nodes is a classic problem in graph theory and can be
solved polynomially, using Dijkstra’s algorithm [32].
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as a proxy, with, and thus we have that |P | ≥ 1 in all cases.
Data production and consumption. In typical industrial applications, like condition

monitoring, sensor nodes perform monitoring tasks (producers) and in some cases their
sensor data are needed either by other sensor nodes, which could need additional data
to complement their own local measurement, or by actuator nodes, which use the sensor
data so as to perform an actuation (consumers). When needed, a consumer u can ask
for data of interest using the primitives defined by the underlying routing protocol from a
sensor node v (from a proxy p, when using the DML)4. We define the set of m consumers
as Sc ⊂ S, with |Sc| = m < n. When a proxy p receives a data request from a consumer u,
it propagates the requested data back, along the same routing path, starting at v and
finishing at the consumer u. Note that the length of this individual data delivery path is
twice the length of the path between u and p. We assume that the data generation and
access processes are not synchronized. Specifically, we assume that data consumers
request data at un unspecified point in time after data has been generated by data
producers and transferred to the proxies.

The latency constraint. Let lu,v be the single-hop data transmission latency from a
node u ∈ S to another node v ∈ S [34]. We define as access latency the amount of
time required for the data to reach consumer u, after u’s request, when the data follow
a multi-hop propagation between u and v (v = p, in the DML case). We denote ac-
cess latency as Lu,v = lu,si + ... + lsj ,v + lv,sj + ... + lsi,u. We define as average access

latency across all consumers the quantity L =
∑

∀u∈Sc
Lu,v

m . Industrial applications are typ-
ically time-critical, and consequently the industrial operator requires a maximum data
access latency threshold Lmax. This is an important constraint in the network and the
implementation of a data delivery strategy should ensure that the average multi-hop ac-
cess latency does not exceed the threshold value. In other words, the following inequality
should hold: L ≤ Lmax. Note that this formulation is amenable to different purposes. If Lu,v
is the mean latency between u and v, the above inequality guarantees that the average
of the mean latencies is below Lmax. If it is the worst-case latency between u and v, the
inequality provides a guarantee on the average worst-case latency. In the following we
show that the DML can be used in both cases.

3.2 The Data Management Layer

The basic function of the DML is the selection of some nodes which will act as proxies,
and the establishment of an efficient method for data distribution and delivery, using the
proxies. More specifically, the role of the DML is to define a set P ⊂ S, the elements of
which are the selected proxies. The number of the proxies can range from 1 to n− 1. The
case of 1 proxy is equivalent to having only the controller C operating as a single point of
data distribution. In this case, the data distribution is functioning as in traditional industrial
IoT environments.

This demarcated model of data exchanges can be formulated as a publish/subscribe
(pub/sub) model [35]. In a pub/sub model, a consumer subscribes to data, i.e., denotes
interest for it to the corresponding proxy, and the relevant producer publishes advertise-
ments to the proxy. The DML assumes that the pub/sub process is regulated at the central
controller C, which maintains knowledge on the sets of producers, consumers and re-
quests. Based on this, C can find an appropriate set of proxies based on the algorithm
we present next. Inside the network, the proxies are responsible for matching subscriptions
with publications i.e., they provide a rendezvous function for storing the available data
according to the corresponding subscriptions. The producers do not hold references to
the consumers, neither do they know how many consumers are receiving their generated
data.

All proxies do not necessarily store the same data; they store different data depending
on the consumers they are assigned to. The selection of the proxies should be done

4For example, nodes could use RPL, in storing or non-storing mode [33] and a low-power multi-hop MAC
protocol, like IEEE 802.15.4e [13].
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balancing two requirements. On the one hand, the number of proxies should be sufficient
to make sure each consumer finds data “close enough” to guarantee that L ≤ Lmax. On
the other hand, as the role of proxy implies a resource burden on the selected nodes,
their number should be as low as possible. The proxy selection problem can thus be
formulated as an integer program. More specifically, given a set S of nodes, a set Sc ⊂ S
of consumers and an access latency threshold Lmax, the network designer should target
the minimization of the number of proxies needed in the network so as to guarantee
L ≤ Lmax. We define two sets of decision variables, (a) xp = 1, if p ∈ S is selected as proxy
and 0, otherwise, (b) yu,p = 1, if consumer u ∈ S is assigned to proxy p ∈ S and 0, otherwise.
Then, the integer program formulation is the following:

Min.:
∑
p∈S

xp (1)

S. t.:
∑
u∈Sc

∑
p∈S

Lu,p · yu,p
m

≤ Lmax (2)

∑
p∈S

yu,p = 1 ∀u ∈ Sc (3)

yu,p ≤ xp ∀u ∈ Sc,∀p ∈ S (4)
xp, yu,p ∈ {0, 1} ∀u ∈ Sc,∀p ∈ S (5)

The objective function (1) minimizes the number of proxies5. Constraint (2) guarantees
that L ≤ Lmax. Constraints (3) guarantee that each node has to be assigned to one and
only one proxy. Constraints (4) guarantee that nodes can be assigned only to proxies.
Constraints (5) guarantee that all nodes are considered for potentially being selected as
proxies and that all nodes requesting data are assigned to a proxy.

The proxy selection problem is computationally intractable, since it can be formulated
as an integer program. This means that it is impossible to optimally calculate in polyno-
mial time the minimum proxies needed while staying below Lmax. Also, the formulation of
the problem considers the latency of communication Lu,p, and not an abstract number
of hops. This makes the formulation realistic for industrial environments, but even more
difficult a problem, as it becomes also infeasible to assign the real values to Lu,p of con-
straints (2). This is due to the fact that we are not able to know the exact values of the
individual transmission latencies lu,v, before they happen. To address this issue, we provide
a heuristicwhich takes into account the latencies Lu,p, instead of number of hops, thus
defining the ProxySelection+ algorithm (Algorithm 1). ProxySelection+ is a myopic algo-
rithm which does not give the optimal solution. The use of simple heuristics like the one
in ProxySelection+ shows that the DML is able to outperform the traditional centralized
methods, even when adopting simple methods.

ProxySelection+ sets the controller C as the first proxy the network, and it gradually in-
creases the number of proxies (counter) until it reaches a number with which the average
access latency L does not violate the maximum latency threshold Lmax. In every iteration
(lines 5-9), the exact selection of the of the next proxy in the network is performed using
a myopic greedy addition (lines 6-8). Each candidate node is examined and the one
whose addition to the current solution reduces the average access latency the most is
added to the incumbent solution. To this end, the latency between a candidate proxy (k
in line 7) and a consumer (u in line 7) is estimated as the length of the shortest path Dk,u

that is connecting them multiplied with the expected latency on each hop (l(h) in line
7). l(h) needs to be initiated through preliminary measurements. This happens through an
initialization phase (line 1) during which the network designer measures different single-
hop data transmission latencies within the industrial installation and gathers a sufficiently
representative dataset of lu,v measurements from different pairs of nodes u, v ∈ S across

5Note that in various industrial scenarios, some nodes might too weak to perform any other operations than
generating and propagating a minimal set of data. The problem formulation which represents those scenarios
is a special case of the problem formulation that we consider in this work, with p ∈ S′, where S′ ⊂ S.
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Algorithm 1: ProxySelection+
Input : S, Sc, ru, Lmax

1 l(h) ← assign value through initialisation phase at the industrial installation
2 Du,v = Dijkstra(S, ru), ∀u, v ∈ S [32]
3 P = {C}
4 counter = 1

5 while counter < n and L > Lmax do
6 for i = 2 : counter do
7 p = arg min

v∈S

∑
u∈Sc

mink∈P∪{v}
l(h)·Dk,u

m

8 P = P ∪ {p}
9 counter + +

Output: P

the network. By using the mean of measured latencies, we obtain a guarantee on the
average mean latency. By using the highest measured value, we obtain a constraint
on the average worst-case latency, implementing the guarantee explained in Section
3.1. The computational complexity of the ProxySelection+ is polynomial with worst case
time of O(V 4). However, this worst-case performance is very difficult to be experienced in
practice, since in order to have O(V 4) time, all n nodes of the network have to be chosen
as proxies; something highly unlikely.

3.3 Implementation and experimental evaluation

3.3.1 Experimental strategy

Strategic purpose. The strategic purpose of the experimental evaluation with real devices
is to provide a realistic demonstration on how efficient data management methods can
significantly improve the data access latency in industrial IoT networks, by using a limited
number of proxies. The realistic approach is of paramount importance in our implemen-
tation strategy. For this reason, we follow some important steps. For the experimental
implementation and evaluation we use the Euratech testbed from the FIT IoT-LAB plat-
form [10]. IoT-LAB a large-scale collection of open wireless IoT testbeds, operated by the
French CNRS and INRIA research institutions [10]. The Euratech testbed is deployed in the
Inria Lille - Nord Europe showroom and 224 nodes are deployed as follows: two horizon-
tal layers in grid formation of 5 × 19 nodes each and 34 nodes attached to a wall, at
a distance of 0.60 m to each other. Fig. 6a displays a photo of the testbed. We use a
network with technical specifications representative of the industrial IoT paradigm (e.g.,
low-power nodes, IEEE 802.15.4 radio interface, large number of devices, etc.). Among all
supported operating systems (e.g., TinyOS, OpenWSN, Contiki), we conducted our imple-
mentation on TinyOS. We carefully choose the Lmax threshold, according to actual indus-
trial requirements and expert groups’ recommendations. In order to have a benchmark
for the performance of our method, we also implement two additional representative
methods, based on routing mechanisms that are usual in current industrial IoT networks.
We vary several experimental parameters so as to investigate the performance consis-
tence of our method under different settings. Finally, we validate a simulation model
based on the real world settings, with which we can further investigate changing param-
eters that are impossible or too time-consuming to investigate on the testbed.

Experiment design. We use a total number of n = 95 nodes in Euratech testbed which
form a 2D horizontal grid, as shown in Fig. 6a. Occasionally, during the experiments, there
are some dead nodes, that is nodes that have ran out of available power and are not
able to function. This occasional unavailability of a subset of nodes renders the exper-
iment even more realistic, since dead node situations frequently occur in real industrial
IoT networks. The nodes that were used in the experiments are WSN430 open nodes, the
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(a) Euratech testbed [10]. (b) WSN430 open node.

Figure 6: Experimental setup.

(a) Network topology of the Euratech testbed.
In the lower left corner the network controller C
is visible as a red dot.

(b) Output of the ProxySelection+ algorithm.
The green dots represent the consumers and the
red dots represent the proxies.

Figure 7: Euratech topology and ProxySelection+ output.

design of which is displayed in Fig. 6b. The WSN430 open node is a mote based on a low
power MSP430-based platform, with a set of standard sensors and an IEEE 802.15.4 ra-
dio interface at 2.4 GHz, using a CC2420 antenna [36], which can support IEEE 802.15.4e
and WirelessHART settings, typical of industrial communications. We programmed and
operated the nodes under TinyOS 2.1.1, a reference operating system for sensor nodes.

Since the testbed nodes are placed in a short distance to each other, we adjust their
transmission range, so as to obtain a realistic multi-hop topology. We configured the
antenna TX power such that, according to the CC2420 antenna datasheet [36] and the
measurements provided in [37], the transmission range is about 3m. However, given that
this value has been measured in ideal conditions, without taking into account external
factors such as obstacles and interference, we program every node u ∈ S to consider as
neighbor every other node v ∈ S with ε(u, v) ≤ 1m. Given this configuration, we obtain a
topology which is depicted in Fig. 7a. Note that, the three “gaps” in the topology are a
result of the dead nodes of the deployment which are unable to communicate with other
nodes. We set the percentage of requesting nodes to m = 0.1 · |S|, selected uniformly at
random from S, and we set C = s1 as the central network controller, which corresponds
to the node with node_id = 1 in the Euratech testbed (lower left node in Fig. 7a).

Setting the Lmax threshold. In order to perform the experiments in the most realistic
way, it is important that the Lmax value is aligned with the official communication require-
ments of future network-based communication solutions for Industry 4.0, for the targeted
industrial applications. Both the WG1 of Plattform Industrie 4.0 (reference architectures,
standards and norms) [38] and the Expert Committee 7.2 of ITG (radio systems) [39] set
the latency requirements for condition monitoring applications to 100ms. However, in or-
der to provide a complete and diverse set of results, we also measure the performance
of our method for different values of Lmax.

Performance benchmarks. In order to measure the performance of the DML with re-
spect to traditional industrial IoT alternatives, we implement two additional data delivery
strategies. The first method is the most traditional data delivery strategy in current indus-
trial IoT environments and imposes that all data requests and data deliveries are being
routed through the controller C. More specifically, the request is routed from consumer u
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Table 1: Measured send/receive latency.

Type of measured latency Notation Value (ms)
Highest latency reported l(max) 23

Mean latency l(mean) 17.4
Lowest latency reported - 13

to C and then from C to producer v. At the next step, the data is routed from v again to C
and then from C to u. We call this mode of operation non storing mode and it is obvious
that it is completely centralized and not cooperative. Note that this would be the simplest
data management approach that can be implemented in relevant routing mechanisms
like RPL [33], where intermediate nodes are not allowed to cache data (thus, the RPL
terminology non-storing mode).

The second method is another, less commonly used in industrial IoT settings, but never-
theless useful alternative. It imposes that all data requests and data deliveries are being
routed through the lowest common ancestor (LCA) of the routing tree, routed at the
controller C. The LCA of two nodes u and v in the routing tree is the lowest (i.e., deep-
est) node that has both u and v as descendants. We call this mode of operation storing
mode, because the LCAs should store additional information about their descendants,
and it is obvious that it is a distributed alternative. Again, this is the simplest method that
one would implement with routing mechanisms like RPL in storing mode, i.e., when in-
termediate nodes between communication endpoints are allowed to cache content.
Storing mode thus provides a distributed method.

We made those choices after careful consideration of the current realistic industrial
networking status-quo. The selected protocols are standardized components of a refer-
ence and well-established communications and data management stack. In fact, they
are considered the state-of-the-art, for current and future wireless industrial applications,
as discussed extensively in [13] and [12]. More specifically, the stack is presented in detail
in [12], and is considered as the de-facto standard for future industrial networks. In the fol-
lowing, for convenience, we use the term “special nodes” when we refer to the network
controller, the proxies or the LCAs.

3.3.2 Experimental results

Running the ProxySelection+ algorithm. We ran the initialization phase of ProxySelection+,
so as to assign values to l(h), by measuring times that are needed for the data exchange
of a sensor measurement from a sensor node to another. We measured the time needed
for the sensor reading to be sent and received from a node to another. This latency
includes time spent in the back-off phase (which cannot be predicted), time spent in
sending the signal over the radio, and time spent during the propagation. We consider
the propagation latency negligible, since radio waves are traveling very fast and we are
not able to measure the time elapsed using the nodes’ timers. In order to obtain reli-
able results, we repeated the propagation measurements for different pairs of transmit-
ting and receiving nodes of Euratech testbed, for 30 times for each pair. We concluded to
the measurements that are shown in the Table 1 (highest, lowest and mean values), after
measuring the relevant times using WSN430 with CC2420 and TinyOS. We can see that the
latency values of data propagation from one node to another significantly vary. While
the lowest latency can be 13ms, the highest propagation latency l(max) is 23ms. The mean
latency l(mean) of the values collected from the repetition of this experiment is 17.4ms6. Af-
ter running ProxySelection+ with Lmax = 100ms, m = 0.1 · |S|, and l(h) = l(mean), we get the
proxy placement that is depicted in Fig. 7b. We can easily see that ProxySelection+ is
balancing the proxy allocation in the network, so as to guarantee a small data access

6Other sources of latency related, e.g., to computation at the receivers have been found to be in the order
of µs, and therefore are neglected. Also, the measuring methodology we used does not depend on the specific
conditions under which these measures are taken.
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Number of proxies in the network
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Figure 8: Experimental results in the IoT-LAB Euratech testbed. The validation of the simu-
lation model is displayed in green.

latency to all the requesting nodes.
Increasing and decreasing the number of proxies. Fig. 8a displays the average access

latency L for different number of proxies in the network. In order to obtain this plot, we
run ProxySelection+ and we gradually add and remove proxies, so as to investigate the
effect of changing the number of proxies on L. In the case where we set l(h) = l(mean),
the DML ensures that L will not surpass Lmax, by assigning 4 proxies in selected positions.
If we further decrease the number of proxies, we have that L > Lmax, and the latency
constraint is not met. At the leftmost point of the plot, we can see the latency achieved
when using only one proxy (the controller C, or in other words, when the DML function-
alities are absent), which is much higher than when employing additional proxies. When
we replace the value of l(h) with l(h) = l(max), and we re-run the algorithm, we observe
similar behavior in the performance, but in this case with 8 selected proxies.

L achieved. Fig. 8b displays the results on the average access latency for the three
alternative methods. The yellow bar for the DML method is the L value when we consider
the worst case of l(h) = l(max). This is an important point to make, as the Figure shows that,
by adapting the number of proxies, DML is able to always guarantee the constraint, irre-
spective of whether l(h) is formulated as an average of mean latencies, or as an average
of worst-case latencies. We can see that the efficient management of proxies provided
by the DML results in a better performance compared to the other two alternatives. This
fact is explained by the nature of ProxySelection+, which receives as input the Lmax.

Number of proxies used. We compare the three methods with respect to the number
of special nodes that they use. The DML is using proxies, the non storing mode is using the
controller C and the storing mode is using LCAs. The use of special nodes is wasteful on
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resources. For example, the proxies store the data requested and the correspondence
of producers and consumers, and the LCAs hold routing information about their descen-
dants. In Fig. 8c, we can see that the DML is performing really well compared to the
storing mode and uses less special nodes. Of course, the non storing mode is using just
one special node, but this has a severe impact on the latency achieved, as shown in
Fig. 8b. Even when the DML uses more proxies to guarantee worst-case latencies, their
number if comparable to the case of storing mode. However, the DML drastically reduces
the latency in this case, thus achieving a much more efficient use of proxies.

3.4 Large-scale simulations

The testbed environment gives us an important ability to test the methods on real con-
ditions and derive useful indications. However, at the same time it does not allow us to
perform larger scale, or variable experiments, easily and fast. For this reason, we devel-
oped a simulation model based on the system modeling presented in Section 3.1. The
simulation environment we use is Matlab. We verify that the simulations are meaning-
ful via validation, by comparing the results obtained with the simulation model to those
of the testbed experiments, and then we extend our performance evaluation through
simulations.

3.4.1 Validation of the simulation model and simulation settings

We constructed, in simulation, instances similar to the one that was tested in the Euratech
testbed. The results obtained are displayed with green color in Fig. 8. It is clear that the
results obtained by the simulation model are very similar to the results obtained during the
real experiment, and therefore we can extract reliable conclusions from the simulation
environment.

Fig. 9a displays a typical network deployment of 500 nodes, with the corresponding
wireless links and with the controller C lying on the far right edge of the network, depicted
as a red circle. Fig. 9b displays the locations of the final set P of proxies depicted as red
circles after running ProxySelection+. The spatial display of Fig. 9b, shows that the final
selection results in a balanced proxy selection, ensuring that even isolated nodes, which
are located near sparse areas of the network, also have access to a proxy.

In the simulations we focus on showcasing different aspects of the data management
and distribution process. We construct larger and different deployments and topolo-
gies than the ones of the Euratech testbed, we investigate different values of Lmax, we
consider diverse percentages of requesting nodes and we also measure the energy con-
sumption. The deployment area A is set to be circular the nodes are deployed uniformly
at random. We construct networks of different number of nodes, inserting the additional
nodes in the same network area and at the same time decreasing the communication
range ru appropriately, so as to maintain a single strongly connected component at all
times. An example of a generated network of 500 nodes is depicted in Fig. 9a. In the fol-
lowing, we present results where l(h) is measured as the mean of latencies. Fig. 9c shows
the value of L obtained in the case of Fig. 9a, qualitatively confirming the results shown
in Fig. 8a.

3.4.2 Simulation results

Different values of Lmax. We tested the performance of the DML for different values of
Lmax, in networks of 500 nodes, with m = 0.4 · |S|. The results are shown in Fig. 9d. The
red points represent the values for the maximum latency threshold Lmax provided by the
industrial operator. The average access latency achieved by the DML is always below
the threshold, due to the provisioning of ProxySelection+ Algorithm. In fact, we can see
that the more the value of Lmax is increased, the larger the difference between L and
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(a) Topology. (b) ProxySelection+ output.
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Figure 9: Network with n = 500, m = 0.4 · |S|.

Lmax becomes. This happens because for higher Lmax values, the latency constraint is
more relaxed, and lower L can be achieved more easily.

Number of proxies used. We compare the three methods with respect to the number
of special nodes that they use. As usual, the DML is using proxies, the non storing mode
is using the controller C and the storing mode is using LCAs. As we mentioned earlier,
the use of special nodes is wasteful on resources. In Fig. 10a, we can see that the DML is
performing really well compared to the storing mode and uses much less special nodes.
Of course, the non storing mode is using just one special node for any network size, but
this has a severe impact on the latency achieved.

Different percentages of requesting nodes. Another possible factor that could affect
the L achieved, is the percentage of consumers. In Fig. 10b, we can see that L remains
constant for any percentage of requesting nodes, in every of the three alternatives. This
shows that DML is able to automatically adapt the number of proxies, so as to guarantee
the latency constraints irrespective of the number of consumers.

Average latency achieved. Fig. 10c displays the results on the average access latency
for the three alternatives, for different numbers of nodes in the network. We can see that
the efficient management of proxies provided by the DML results in a better performance
compared to the other two alternatives. L achieved by the DML respects the latency
constraint and always remains lower than Lmax (red line).

Energy consumption. Another aspect that we can easily evaluate in simulation, is the
energy cost in terms of communication, related to data access. We evaluate this as the
cost of transmissions required to serve consumers’ requests. In order to obtain the desired
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Figure 10: Comparison of the three methods.

results in units of energy, we transform the dBm units provided in the CC2420 datasheet
[36] to mW and we multiply with the time that each node of the network is operational.
Fig. 10d displays the energy consumption in the entire network for the three alternatives,
for different numbers of nodes. The energy consumption for communication is lower in
the case of the DML because low latency comes with less transmissions in the network,
resulting in fewer energy demands.
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4 Maximum data access latency guarantees

In this section, we exploit the the presence of a limited set of proxy nodes which are more
capable than resource-limited IoT devices in the resource-constrained network. Differ-
ent to the previous section, we focus on network lifetime and on maximum (instead of
average) data access latencies. The problem we consider is the maximization of the net-
work lifetime, given the proxy locations in the network, the initial limited energy supplies
of the nodes, the data request patterns (and their corresponding parameters), and the
maximum latency that consumer nodes can tolerate since the time they request data.
We prove that the problem is computationally hard and we design an offline centralized
heuristic algorithm for identifying which paths in the network the data should follow and
on which proxies they should be cached, in order to meet the latency constraint and to
efficiently prolong the network lifetime. We implement the method and evaluate its per-
formance using an FIT IoT-LAB testbed [10], comprised of IEEE 802.15.4-enabled WSN430
network nodes. We demonstrate that the proposed heuristic (i) guarantees data access
latency below the given threshold, and (ii) performs well in terms of network lifetime with
respect to a theoretically optimal solution.

In Section 4.1, we provide the model of the settings we consider, as well as the neces-
sary notation. In Section 4.2, give a formal definition of the problem we consider, namely
the Latency Constrained Edge Data Distribution Problem. In Section 4.3, we provide an
efficient heuristic algorithm for addressing the problem, as well as a theoretically optimal
solution, the performance of which can serve as an upper bound to the performance of
our algorithm in Section 4.4. Finally, in Section 4.5 we present the experimental findings.

4.1 System modeling

We model an industrial IoT network as a graph G = (V,E) where every node u ∈ V
has a limited amount of energy supply Eu. The network features two types of nodes:
resource constrained sensor and actuator nodes and a limited number of proxy nodes
in a set P , with P ⊂ V , |P | � |V − P |, and Ep � Eu,∀u ∈ V, p ∈ P . A node u ∈ V can
propagate data using suitable industrial wireless technologies (e.g., IEEE 802.15.4e) to a
set of nodes which lie in its neighborhood Nu. Nu contains the nodes v ∈ V for which it
holds that γ · ρu ≥ δ(u, v), where ρu is the transmission range of node u (defined by the
output power of the antenna), δ(u, v) is the Euclidean distance between u and v, and
γ is a neighborhood adjustment parameter, calibrated by the network operator, with
0 < γ ≤ 1. Parameter γ is particularly useful in indoor industrial environments where high
amounts of interference exist [40], and the nodes might need to transmit messages only
to other nodes which are located nearby. The set Nu is thus defining the set of edges
E of the graph G. Each one-hop data propagation from u to v results in a latency luv.
We denote as Luv the latency of the multi-hop data propagation from u to v, where
Luv = lui+ lii+1 + ...+ li+nv. Assuming that all network nodes operate with the same output
power, each one-hop data propagation from u to v requires an amount of εuv of energy
dissipated by u so as to transmit one data piece to v.

Occasionally, data generation occurs in the network, relevant to the industrial process.
The data are modeled as a set of data pieces D = {Di}. Each data piece is defined as
Di = (si, ci, ri), where si ∈ V is the source of data piece Di, ci ∈ V is the consumer of data
piece Di, and ri is the data generation rate of Di. If the same data of a source, e.g.,
s1, is requested by more than one consumers, e.g., c1 and c2, we have two distinct data
pieces, D1 = (s1, c1, r1) and D2 = (s2, c2, r2), where s1 = s2. Without loss of generality, we
divide time in time cycles τ and we assume that the data may be generated (according
to rate ri) at each source si at the beginning of each τ . We assume at the data genera-
tion and request patterns are not synchronous, and that therefore data generation need
to be cached temporarily for future requests by consumers. This asynchronous data distri-
bution can be implemented through an industrial pub/sub system [41]. A critical aspect
in the industrial operation is the timely data access by the consumers upon request, and,
typically, the data distribution system must guarantee that a given maximum data access
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latency constraint (defined by the specific industrial process) is satisfied. We denote this
threshold as Lmax.

We consider that the set P of proxy nodes is strong in terms of computation, storage
and energy supplies, and any node p ∈ P can act as proxy in the network and cache
data originated from the sources, for access from the consumers when needed. This re-
lieves the IoT devices from the burden of storing data they generate (which might require
excessive local storage), and helps meeting the latency constraint, as discussed in the
following. When a data piece Di is generated at source si, it is delivered and stored
to a proxy p via a multi-hop wireless path. Upon a request from ci, it is delivered from
p via a (distinct) multi-hop path. We denote as Lci the data access latency of ci, with
Lci = lciu+ ...+ lvp+ lpv + ...+ luci . In order to meet the industrial requirements the following
constraint must be met:

Lci ≤ Lmax,∀ci ∈ V (6)

Given this constraint, our goal is to identify, for each data source si, the proxy p where
its data should be cached, in order to maximize the total lifetime of the network. In the
following section we formally define this maximization problem.

4.2 The Latency Constrained Edge Data Distribution problem

4.2.1 Computational intractability of the problem

Below we give a formal definition of the problem we consider. More specifically, our
problem can be formulated first as a decision problem, i.e., one where we check the
existence of a feasible allocation (which can be posed as a yes-no question of the input
values), and then as a computation problem, i.e., one where we should find the optimal
solution. We then show that even the decision version is computationally intractable; this
result gives us leverage on designing efficient heuristics for the computation version of the
problem.

Decision problem (LCED). Suppose that we are given a network G = (V,E), a set of
proxies P deployed in the network, the energy supplies Eu and energy consumption costs
εuv for every u, v ∈ V , and d data pieces D1, D2, ..., Dd. The Latency Constrained Edge
Data Distribution problem (LCED) is to determine whether there is a feasible multi-hop
data propagation schedule such that at least one p ∈ P stores the data for every ci ∈ V ,
the latency constraint Lci ≤ Lmax is met for every ci ∈ V , and, at the same time, no node
in the network runs out of energy before time T .

Note that in this version of the problem, we introduce parameter T , which is used for
the proof on NP-completeness, and will be omitted in the formulation of the computa-
tion version, as the problem will be turned into a maximization of the time until the first
node dies, which is a typical measure of network lifetime in the networking literature. We
show that the general version of the LCED is NP-complete.

Theorem 1. LCED is NP-complete.

Proof. We first note that, given a certain data propagation schedule, we can verify
whether this schedule is sufficient so that no node dies, i.e., no node u spends exactly
Eu energy for propagating data before time T . In particular, this can be done in O(dV )
time, by summing the energy spent on every node in the network for every data piece
generated until time T . Therefore, we have that LCED ∈ NP.

For the hardness part we use the Directed Two Commodity Integral Flow problem [42,
p. 216], D2CIF in short. Let G(V,A), s1, s2, t1, t2, c(a) = 1,∀a ∈ A,R1, R2 be the input of D2CIF.
We now transform this into an input for LCED as follows:

We set the energies needed for the transmission of a data piece εuv = ε·c(u, v)
c(a)=1,∀a∈A

=
ε, the latencies required for the one-hop data propagations of a data piece luv = l,∀u, v ∈
V and the initial energy supplies of the nodes in the network Eu =

∑
v∈Nu

εuv,∀u, v ∈ V .
Then, we modify G in order to take into account the edge capacities of D2CIF as follows:
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For every u ∈ V with Eu > ε, we “break” the edge (u, v) and we insert an additional node
u′ with Eu′ = ε, as shown in Fig. 11, thus replacing edge (u, v) with two new edges, (u, u′)
and (u′, v), with energies needed for transmission of a data piece εuu′ = εu′v = ε. We set
the number of data pieces d = d1 +d2 with d1 = R1 data pieces (s1, c1, 1) and d2 = R2 data
pieces (s2, c2, 1). We set ci = pi = ti and Lmax < minu∈Nci

lciu,∀i ∈ {1, 2}. Finally, assuming
that the data are generated at the beginning of each time cycle τ , we set T = τ . In
order to reassure that the data pieces of cycle τ have been delivered before the start of
cycle τ + 1, τ has to be sufficiently long. For this reason we set τ = l · |E|.

vu

w

1

1 1

(a) D2CIF graph

vu′u

wu′′

ε ε

ε

ε

ε

Eu = 2ε Eu′ = ε

Eu′′ = ε Ew = ε

(b) LCED node insertion.

Figure 11: Toy example of a graph transformation in LCED.

Notice that an answer to this instance of the LCED problem would provide an answer
also to D2CIF, which means that D2CIF ≤m LCED. This completes the proof.

4.2.2 The objective function on the maximum lifetime

We now define the computation version of the problem, by providing the target objective
function. Our objective is to maximize the lifetime of the network. We define as lifetime
the time elapsed from the beginning of the data distribution until the time that the first
node in the network depletes its energy.

Computation problem (C-LCED). Find a multi-hop data propagation schedule that max-
imizes the lifetime of the network and ensures that at least one p ∈ P stores the data for
every ci ∈ V , and that Lci ≤ Lmax for every ci ∈ V .

In order to construct the objective function, we introduce the decision variables,
xiuv which hold the necessary information regarding the transmission of the data pieces
across the edges of the graph. More specifically, xiuv = 1 when edge (u, v) is activated for
data piece Di. On the contrary, xiuv = 0 when edge (u, v) is inactive for the transmission of
data piece Di. We denote as auv =

∑d
i=1 rix

i
uv the aggregate data rate of (u, v). Stack-

ing all auv together, we get x = [auv], the data rate vector of node u for every v ∈ Nu.
Following this formulation, the lifetime of node u ∈ V can be defined as:

Tu(x) =
Eu∑

v∈Nu
εuvauv

. (7)

The network lifetime and objective function of the problem is thus defined as:

T (x) = min
u∈V

{
Tu(x) |

∑
v∈Nu

xiuv > 0

}
(8)

4.3 An offline centralized heuristic

In this section, we provide an algorithm (Algorithm 2) for computing the values of xiuv
variables, which in turn are used to compute the value of the objective function (i.e., the
lifetime of the network), given the set of proxies in the network, the set of data pieces,
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Algorithm 2: PriorityDataDistribution
Input : G,P,D,Eu, εuv, Lmax

1 l(h) ← assign value through initialization phase at the industrial installation
2 Ω′pci ← ∀ci ∈ V compute Ωpci , using Eppstein’s algorithm [43] and cut paths with

|Ω(j)
pci | · l(h) > Lmax

3 D′ ← sort D from highest to lowest ri
4 for i = D′1 : D′d do
5 P ′ ← P with Ω

′(j)
pci 6= ∅

6 for ∀p ∈ P ′ do
7 Πsip ← lifetime weighted path si → p
8 Πpci ← lifetime weighted path p→ ci

9 T imax = maxp∈P ′ minu∈Πsip
∪Πpci

T iu(x)

10 Πi ← Πsip ∪Πpci which achieves T imax(x)
11 xiuv = 1,∀u, v ∈ Πi

Output: xiuv

the initial energy supplies of the nodes and the data access latency constraint Lmax. The
algorithm is called PriorityDataDistribution (PDD in short) due to the fact that it starts
serving the data pieces with respect to their generation rate. The intuition behind this
prioritization is that the higher the generation rate of a data piece, the more energy it will
dissipate in the network. Consequently, serving at first the more demanding data pieces
will ensure the allocation of nodes with long remaining lifetime to them.

The overall intuition behind the heuristic is as follows. For each data piece, we com-
pute possible paths that would meet the maximum latency constraint. For each such
path, we compute the energy drain on the nodes in the path. Therefore, we identify the
node in the network with the minimum residual lifetime, if that path is activated. Among
all feasible paths, we finally pick the one resulting in the maximum residual lifetime. In-
tuitively, the algorithm progressively balances energy consumption across nodes, thus
maximizing the time until the first node dies.

In general, the values of Lci are unknown a priori, and therefore we assume that mea-
surements of the edge latencies are available, and we take the maximum latency as
(worst-case) representative. For this reason, at the first step of the algorithm, we initialize
l(h) through preliminary measurements. This happens through an initialization phase (line
1 in Algorithm 2) during which the network designer measures different single-hop data
transmission latencies within the industrial installation and gathers a sufficiently represen-
tative dataset of luv measurements from different pairs of nodes u, v ∈ V . By using the
highest measured value, we obtain a base value l(h) on the worst-case one-hop latency
(one could also store the worst-case latency on each link, and use them to compute the
expected latency on the paths, improving the accuracy of the heuristic without chang-
ing the computational complexity of the algorithm).

In order to address the latency constraint, we define for every pair of ci and p a set of
paths Ωpci . Specifically, Ωpci is a set of k paths Ω

(1)
pci , ...,Ω

(k)
pci , where Ω

(j)
pci is the set of edges

(u, v) of path j:
Ωpci =

{
Ω(1)
pci , ...,Ω

(k)
pci

}
. (9)

The sets Ωpci can be known during the network deployment or alternatively, they can
be approximately computed by using known methods (e.g., Eppstein’s algorithm [43], in
O(E + V log V + k) time). If the optimal paths from the consumers to the proxies which
achieve Lci ≤ Lmax are not given, the algorithm computes an approximate set of k such
paths (line 2).

The algorithm then sorts the data pieces according to their generation rate (line 3)
and iterates for each data piece Di the following process: It considers the subset of
proxies which can serve ci respecting the data access latency constraint (line 5). For
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every proxy node p, the algorithm computes the shortest weighted paths from si to p and
from p to ci (lines 7-8). We consider as weight of node u the remaining lifetime T i−1

u (x) −
T iu(x) during the consideration of data piece Di, with auv =

∑i
1 rix

i
uv. Then, the algorithm

chooses the path Πi which achieves the longest lifetime T imax (lines 9-10). Specifically, for
each path we compute the node that will die first in the network if that path is activated,
and we take the path resulting in the longest time until the first node dies. The edges
of the nodes of this path are then activated for data piece Di by setting xiuv = 1 (line
11) and the algorithm moves to the next data piece. It can be shown that PDD requires
O(DPV 2 + E + k) time in the worst case.

4.4 Benchmarking with a theoretically optimal solution

We additionally provide a formulation of a relaxed version of the problem. We use the
performance of the solution of this formulation as a benchmark, in order to have a per-
formance upper bound for PDD. At first, we formulate the problem as an integer program,
without considering the latency constraint:

max.: T (x) (10)

subj. to:
∑
v∈V

(xiuv − xivu) = 0 ∀u ∈ V \ {si, ci} (11)∑
v∈V

(xisiv − x
i
vsi) = 1 ∀si ∈ V (12)∑

v∈V
(xiciv − x

i
vci) = −1 ∀ci ∈ V (13)∑

v∈V

∑
i

εuvrix
i
uv ≤ Eu ∀u ∈ V (14)∑

v∈V
xiuv ≤ 1 ∀u ∈ V,∀i (15)

xiuv,∈ {0, 1} ∀u, v ∈ V,∀i (16)

The objective function (10) maximizes the time until the first node in the network de-
pletes its energy. Constraints (11-13) guarantee the data flow conservation for all nodes.
Constraints (14) guarantee that the total energy consumption of every node u will not
exceed the initial energy value Eu. Constraints (15) guarantee that each data piece is
propagated from u through one and only one edge (u, v). The variables xiuv (16) are set
to be integers, according to the problem formulation. Note that if we want to ensure that
at least one proxy is included at the distribution of the data pieces, we can impose an
additional set of constraints which ensure that

∑
p∈P x

i
pv ≥ 1,∀i.

In order to be able to provide a relevant solution for this problem formulation, we con-
sider the linear programming relaxation by replacing the constraints (16) by the weaker
constraints xiuv,∈ [0, 1]. This relaxation leads to a linear multi-commodity flow problem with
fractional flows, which in our case means that an arbitrary fraction of the data piece is
sent through edge (u, v) and thus a data piece can be broken in smaller pieces of any
fractional size, and sent across multiple links. This does not allow us to evaluate its perfor-
mance in real settings, but only in simulations, however, in all cases, the solution quality
of the linear program is at least as good as that of the integer program, because any
integer program solution would also be a valid linear program solution.

4.5 Experimental evaluation

For the experimental implementation and evaluation, we used the Euratech testbed of
FIT IoT-LAB. For acquiring the results of the linear program and the performance upper
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Table 2: Experimental parameters.

Parameter Value
Topology

deployment dimensions (2D grid) 2.4 m × 6.0 m
number of nodes |V |, edges |E|, proxies |P | 18, 47, 4
node distances δ(u, v) 1.2− 1.7 m
transmission range ρu, parameter γ 3 m, 0.6
neighborhood Nu v, with d(u, v) ≤ 2 m

Hardware
MCU (ultra low-power) MSP430
antenna (IEEE 802.15.4) CC2420
max. battery capacity 830 mAh, 3.7 V
node energies Eu, proxy energies Ep 0− 1, 3 Wh
transmission power −25 dBm

Time
time cycle τ 1 sec
latency threshold Lmax 120 ms
max. measured one-hop latency l(h) 28 ms
experiment duration 20 min

Data
percentage of consumers ci 0.05− 45%
data piece generation rate ri 1− 8 Di/sec
data piece size (incl. headers and CRC) 9 bytes

(a) Nodes reservation. (b) Network topology.

Figure 12: Experimental setup.

bound, we used the Matlab linprog solver. The details of the experimental setup are
exposed in Table 2.

4.5.1 Experimental setup and parameters

Topology. For the purpose of this study, and in order to acquire a realistic indoor industrial
topology we reserved 18 of the testded’s nodes (purple dots in Fig. 12a), a selection
which results in node distances of 1.2 − 1.7 m. After having investigated various output
power levels (Fig. 13a), we targeted a transmission power of 3 m, with γ = 0.6, which in
turn results to a neighborhood with 5 neighboring nodes on average, where v ∈ Nu when
d(u, v) ≤ 2. We selected 4 nodes to act as proxies in the network. Given this configuration,
we obtain a topology which is depicted in Fig. 12b.

Hardware. For the experiments we use the WSN430 open nodes, the design of which
is displayed in Fig. 6b. The WSN430 open node is a mote based on a low power MSP430-
based platform, with a set of standard sensors and IEEE 802.15.4 radio interface at 2.4
GHz, using a CC2420 antenna [36]. We configured the antenna TX power at −25 dBm
and, according to the CC2420 antenna datasheet [36], we acquire the preferred range
ρu = 3 m. The nodes are battery operated with maximum capacity of 830 mAh at 3.7 V.
We equip the nodes with 0− 1 Wh and the proxies with 3 Wh of energy.
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Figure 13: Initialization measurements.

Time. In order to perform the experiments in the most realistic way, we align the Lmax
value with the official requirements of future network-based communications for Industry
4.0, for the targeted industrial applications. Both the WG1 of Plattform Industrie 4.0 (ref-
erence architectures, standards and norms) [38] and the Expert Committee 7.2 of ITG
(radio systems) [39] set the latency requirements for condition monitoring applications to
around 100 ms, so we set the data access latency threshold to Lmax = 120 ms. We set
τ = 1 sec and we assigned l(h) = 28 ms after the initialization phase, as explained in the
next subsection. Although the experiments duration was set to 20 minutes (which is a very
short period to demonstrate the industrial operation effects on the network lifetime) due
to resource sharing restrictions with other users of the FIT IoT-LAB platform, we extended
our results to longer periods of time, based on the measurements we obtained.

Data. We set the percentage of data sources and consumers to be between 0.05 −
45% on the network nodes number, with a data piece generation rate of ri = 1−8 Di/sec.
The data piece size was set to 9 bytes.

4.5.2 Experimental results

Initialization phase. We ran the initialization phase of PDD, so as to assign values to l(h), by
measuring times that are needed for propagating a data piece. In order to obtain reli-
able results, we repeated the propagation measurements multiple times for all 18 nodes,
for different pairs of transmitting and receiving nodes of Euratech testbed. We concluded
to the measurements that are shown in the Fig. 13b (mean and maximum values), after
measuring the relevant latencies using WSN430 with CC2420 and TinyOS. We can see
that the latency values of data propagation from one node to another significantly vary.
While the mean latencies are 17 − 19 ms, the maximum propagation latencies observed
are 22− 28 ms. In order to provide maximum latency guarantees with respect to Lmax, we
assign to l(h) the maximum value observed in the experiments, l(h) = 28 ms.

Network lifetime. We ran the PDD defined data distribution in the network for increas-
ing number of consumers (ci = 1 − 8) and for increasing data piece generation rates
(ri = 1− 8 Di/sec), and we compared the results to the performance of the theoretically
optimal solution. The comparison is shown in Fig. 14a. We can see that PDD sufficiently
approximates the performance of the optimal solution with a difference of 70− 300 hours
in terms of network lifetime. Considering the many relaxations that the optimal solution
assumes (see Section 4.4), this is a remarkably good result (the optimal solution is com-
puted over much milder constraints, and therefore it is more a computable benchmark
than an optimal solution).
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Figure 14: Experimental results.

Data access latency. Fig. 14b depicts the data access latency achieved by each one
of the consumers in network. We measured the latencies asynchronously, by individual
requests of the consumers to the corresponding proxies which cached their data. We
can see that the latency values lie below the data access latency threshold (red line in
Fig. 14b). Note that the consumer requesting data piece D2 has a longer access time
because its position in the network is farther from a proxy, compared to the positions of
the rest of the nodes.

Energy balance. For the PDD case, we measured the energy dissipated on each indi-
vidual node, in order to get an indication about the energy consumption balance over
the network. More specifically, we present graphically the spatial evolution of energy
consumption in the network. Nodes with high energy consumption are depicted with
dark colors. In contrast, nodes with low energy consumption are depicted with bright
colors. As exposed in Fig. 14c, PDD achieves a balanced energy consumption over the
network, frequently moving data through the nodes with high energy supplies. The rea-
son why the darker node is one in the center is because, as shown in Fig. 12b, it is a central
proxy node with 8 edges which serves a lot of requests, as well as lies on numerous paths
when d = 8.
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5 Dynamic path reconfigurations

As in the previous Sections, we assume that applications require a certain upper bound
on the data delivery delay from proxies to consumers, and that, at some point in time, a
central controller computes an optimal set of multi-hop paths from producers to proxies,
and from proxies to consumers, which guarantee a maximum delivery delay, while max-
imizing the energy lifetime of the network (i.e., the time until the first node in the network
exhaust energy resources). In this Section, we focus on maintaining the network configu-
ration in a way such that application requirements are met after important network op-
erational parameters change due to some unplanned events (e.g., heavy interference,
excessive energy consumption), while guaranteeing an appropriate utilization of energy
resources. We provide several efficient algorithmic functions which locally reconfigure
the paths of the data distribution process, when a communication link or a network node
fails. The functions regulate how the local path reconfiguration should be implemented
and how a node can join a new path or modify an already existing path, ensuring that
there will be no loops. The proposed method can be implemented on top of existing
data forwarding schemes designed for industrial IoT networks. We demonstrate through
simulations the performance gains of our method in terms of energy consumption and
data delivery success rate.

In Section 5.1, we provide the model of the settings we consider, as well as the neces-
sary notation. In Section 5.2, we give a formal definition of the network epoch, a lifetime-
based metric that will help in the algorithmic design. In Section 5.3, we provide an effi-
cient, distributed data forwarding and path reconfiguration method by presenting some
of its core functions. Finally, in Section 5.4 we conduct a performance evaluation based
on simulations.

5.1 System modeling

We model an industrial IoT network as a graph G = (V,E). Typically, the network features
three types of devices [1]: resource constrained sensor and actuator nodes u ∈ V , a
central network controller C, and a set of proxy nodes in a set P , with P ⊂ V , |P | � |V −P |.
Every node u ∈ V , at time t, has an available amount of finite energy Etu. In general,
normal nodes u have limited amounts of initial energy supplies E0

u, and proxy nodes have
significantly higher amounts of initial energy supplies E0

p , with E0
p � E0

u,∀u ∈ V, p ∈ P .
A node u ∈ V can achieve one-hop data propagation using suitable industrial wireless

technologies (e.g., IEEE 802.15.4e) to a set of nodes which lie in its neighborhood Nu. Nu
contains the nodes v ∈ V for which it holds that ρu ≥ δ(u, v), where ρu is the transmission
range of node u (defined by the output power of the antenna) and δ(u, v) is the Euclidean
distance between u and v. The sets Nu are thus defining the set of edges E of the graph
G. Each one-hop data propagation from u to v results in a latency luv. Assuming that all
network nodes operate with the same output power, each one-hop data propagation
from u to v requires and amount of εuv of energy dissipated by u so as to transmit one
data piece to v. A node can also transmit control messages to the network controller C
by consuming εcc amount of energy. For this kind of transmissions, we assume that more
expensive wireless technology is needed, and thus we have that εcc � εuv (for example,
the former can occur over WiFi or LTE links, while the latter over 802.15.4 links).

Occasionally, data generation occurs in the network, relevant to the industrial process.
The data are modeled as a set of data pieces D = {Di}. Each data piece is defined as
Di = (si, ci, ri), where si ∈ V is the source of data piece Di, ci ∈ V is the consumer7 of
data piece Di, and ri is the data generation rate of Di. Each data piece Di is circulated
in the network through a multi-hop path Πsici . Each node u ∈ Πsici knows which is the
previous node previous(i, u) ∈ Πsici and the next node next(i, u) ∈ Πsici in the path of data
piece Di. Without loss of generality, we divide time in time cycles τ and we assume that

7If the same data of a source, e.g., s1, is requested by more than one consumers, e.g., c1 and c2, we have
two distinct data pieces, D1 = (s1, c1, r1) and D2 = (s2, c2, r2), where s1 = s2.
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the data may be generated (according to rate ri) at each source si at the beginning of
each τ , and circulated during τ . The data generation and request patterns are not nec-
essarily synchronous, and therefore, the data pieces need to be cached temporarily for
future requests by consumers. This asynchronous data distribution is usually implemented
through an industrial pub/sub system [41]. A critical aspect in the industrial operation
is the timely data access by the consumers upon request, and, typically, the data dis-
tribution system must guarantee that a given maximum data access latency constraint
(defined by the specific industrial process) is satisfied. We denote this threshold as Lmax.

Due to the fact that the set P of proxy nodes is strong in terms of computation, storage
and energy supplies, nodes p ∈ P can act as proxy in the network and cache data orig-
inated from the sources, for access from the consumers when needed. This relieves the
IoT devices from the burden of storing data they generate (which might require excessive
local storage), and helps meeting the latency constraint. We denote as Luv the latency
of the multi-hop data propagation of the path Πuv, where Luv = lui + li(i+1) + ...+ l(i+n)v.
Upon a request from ci, data piece Di can be delivered from p via a (distinct) multi-hop
path. We denote as Lci the data access latency of ci, with Lci = Lcip + Lpci . We assume
an existing mechanism of initial centrally computed configuration of the data forwarding
paths in the network, e.g., as presented in [44]. In order to meet the industrial require-
ments the following constraint must be met: Lci ≤ Lmax,∀ci ∈ V .

5.2 Network epochs and their maximum duration

In order to better formulate the data forwarding process through a lifetime-based met-
ric, we define the network epoch. A network epoch j is characterised by the time J (τ
divides J) elapsed between two consecutive, significant changes in the main network
operational parameters. A characteristic example of such change is a sharp increase
of εuv between two consecutive time cycles, due to sudden, increased interference on
node u, which in turn leads to increased retransmissions on edge (u, v) and thus higher
energy consumption. In other words, εuv(τ)−εuv(τ−1)

εuv(τ) > γ, where γ is a predefined threshold.
During a network epoch, (all or some of) the nodes initially take part in a configuration
phase (central or distributed), during which they acquire the plan for the data distribu-
tion process by spending an amount of ecfg

u energy for communication. Then, they run the
data distribution process. A network epoch is thus comprised of two phases: Configura-
tion phase. During this initial phase, the nodes acquire the set of neighbors from/to which
they must receive/forward data pieces in the next epoch. Data forwarding phase. Dur-
ing this phase the data pieces are circulated in the network according to the underlying
network directives.

Network epochs are just an abstraction that is useful for the design and presentation
of the algorithmic functions, but does not need global synchronization. As it will be clear
later on, each node locally identifies the condition for which an epoch is finished from
its perspective, and acts accordingly. Different nodes “see” in general different epochs.
Although some events which affect the epoch duration cannot be predicted and thus
controlled, we are interested in the events which could be affected by the data distri-
bution process and which could potentially influence the maximum epoch duration. We
observe that an epoch cannot last longer than the time that the next node in the net-
work dies. Consequently, if we manage to maximize the time until a node dies due to
energy consumption, we also make a step forward for the maximization of the epoch
duration.

We now define the maximum epoch duration, as it can serve as a useful metric
for the decision making process of the distributed path reconfiguration. The maximum
epoch duration is the time interval between two consecutive node deaths in the net-
work. Specifically, each epoch’s duration is bounded by the lifetime of the node with the
shortest lifetime in the network, given a specific data forwarding configuration. Without
loss of generality, we assume that the duration of the configuration phase equals τ . We
define the variables, xijuv which hold the necessary information regarding the transmission
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of the data pieces across the edges of the graph. More specifically, for epoch j, xijuv = 1
when edge (u, v) is activated for data piece Di. On the contrary, xijuv = 0 when edge
(u, v) is inactive for the transmission of data piece Di. We denote as ajuv =

∑d
i=1 rix

ij
uv the

aggregate data rate of (u, v) for epoch j. Stacking all ajuv together, we get xju = [ajuv], the
data rate vector of node u for every v ∈ Nu. Following this formulation (and if we assumed
that J →∞) the maximum lifetime of u during epoch j can be defined as:

Tu(xju) =


Ej

u∑
v∈Nu

εuva
j
uv

if Eju > ecfg
u

τ if Eju ≤ ecfg
u

0 if Eju = 0

(17)

where ecfg
u is the amount of energy that is needed by u in order to complete the con-

figuration phase. Consequently, given an epoch j, the maximum epoch duration is
Jmax = minu∈V

{
Tu(xju) |

∑
v∈Nu

xijuv > 0
}

.
In Section 4 we presented methods which can identify, for each data source si, the

proxy pwhere its data should be cached, in order to maximize the total lifetime of the net-
work until the first node dies (or, in other words, maximize the duration of the first epoch:
max minu∈V

{
Tu(x1

u) |
∑
v∈Nu

xi1uv > 0
}

), and configure the data forwarding paths accord-
ingly. Reconfigurations can be triggered also when the conditions under which a con-
figuration has been computed, change. Therefore, (i) epoch duration can be shorter
than J , and (ii) we do not need any centralized synchronization in order to define the
actual epoch duration. We consider the epoch as only an abstraction (but not a work-
ing parameter for the functions), which is defined as the time between two consecutive
reconfigurations of the network, following the functions presented in Section 5.3.

5.3 Path reconfiguration and data forwarding

The main idea behind our method is the following: the nodes are initially provided with
a centralized data forwarding plan. When a significant change in the network occurs,
the nodes involved are locally adjusting the paths, using lightweight communication links
among them (e.g., 802.15.4) instead of communicating with the central network con-
troller (e.g., LTE, WiFi). The main metric used for the path adjustment is the epoch-related
Tu(xju), as defined in Eq. 17. The functions’ pseudocode is presented in the following sub-
sections. The functions are presented in upright typewriter font and the messages which
are being sent and received are presented in italics typewriter font. The arguments in
the parentheses of the functions are the necessary information that the functions need in
order to compute the desired output. The arguments in the brackets of the messages are
the destination nodes of the messages and the arguments in the parentheses of the mes-
sages are the information carried by the messages. We assume that a node u complies
with the following rules: u knows the positions of every v ∈ Nu, u knows the neighborhood
Nv of every node v in its own neighborhood Nu, and u stores only local information or
temporarily present data pieces in transit.

Distributed data forwarding. The distributed data forwarding function DistrDataFwd(u)
pseudocode is being ran on every node u of the network and is provided in the body of
Alg. 3. At first, if E0

u > 0, the node communicates its status to the central network con-
troller (which uses the method presented in Section 4 for computing the data distribution
parameters (proxy allocation, data forwarding paths) in an initial setup phase of the net-
work), it receives the data forwarding plan and it initiates the first time cycle (lines 1-4).
Then, for every time cycle u repeats the following process, until either it is almost dead,
or more than half of its associated wireless links spend more energy compared to the
previous time cycle, according to the system parameter γ (lines 5-18): u starts the data
forwarding process according to the data distribution plan received by C (line 6). After-
wards, it checks if a set of control messages have been received from any v ∈ Nu and
acts accordingly, by calling the necessary functions (lines 7-16).
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Algorithm 3: DistrDataFwd(u)

1 if E0
u > 0 then

2 send status [C](Eu, εuv, luv)
3 receive plan [u]
4 τ = 1
5 repeat
6 run DataForwarding(τ)

7 if ∃(u, v) with εuv(τ)−εuv(τ−1)
εuv(τ) > γ then

8 Deactivate(i, (u, v)), ∀Di

9 send alert [previous(i, u)](u, v), ∀Di

10 if receive alert[u](v, next(i, v)) then
11 Deactivate(i, (u, v))
12 call LocalPathConfig(i, u, next(i, v))

13 if receive join[u](i, w, v) then
14 call JoinPath(i, w, v)

15 if receive modify_path[u](i, w, deleteArg, dirArg) then
16 call ModifyPath(i, w, deleteArg, dirArg)

17 τ + +

18 until Eu = 0 or εuv(τ)−εuv(τ−1)
εuv(τ) > γ for > 50% of active edges (u, v) of u

19 send alert [previous(i, u)](u, v), ∀Di, ∀v ∈ Nu
20 Disconnect(u)

If u detects that a link is consuming too much energy and has to be deactivated, it
deactivates this link (by causing a path disconnection for every Di that is using this link)
and notifies the previous node in the path of everyDi that was using this link, previous(i, u),
by sending an alert message (lines 7-9). For a given deactivated link (u, v) for data piece
Di, alert messages contain information about Di and about the two nodes u, v in the
path prior to disconnection. Then, u checks whether there has been an alert message
received (line 10), and calls function LocalPathConfig (displayed in Alg. 4). Through this
function the paths can be reconfigured accordingly, for all involved data pieces Di. Due
to the fact that LocalPathConfig sends some additional messages regarding joining a
new path and modifying an existing one, u then checks for reception of any of those
messages (lines 13 and 15) and calls the necessary functions JoinPath and ModifyPath.

Finally, u sends an alert message to the previous nodes in the existing paths prior to
final disconnection due to energy supplies shortage (line 19).

Local path configuration. A node u calls the path configuration function LocalPathConfig
when it receives an alert which signifies cease of operation of an edge (u, v) due to a sud-
den significant increase of energy consumption due to interference

(
εuv(τ)−εuv(τ−1)

εuv(τ) > γ
)

or a cease of operation of a node v due to heavy interference in all of v’s edges or due
to low energy supplies (Alg. 3, lines 9 and 19).

LocalPathConfig is inherently local and distributed. The goal of this function is to restore
a functional path between nodes u and v by replacing the problematic node previous(v)
with a better performing node w, or if w does not exist, with a new efficient multi-hop
path Πuv. At first, u checks if there are nodes ι in its neighborhood Nu which can directly
connect to v and achieve a similar or better one-hop latency than the old configuration
(line 1). If there are, then the w selected is the node ι which given the new data piece,
will achieve a maximum lifetime compared to the rest of the possible replacements, i.e.,
w = arg maxι∈Nu

Tι(x
j
u), and an acceptable latency luw + lwv (line 2). u then sends to w a

join message (line 3).
If such a node does not exist, then u runs local_aodv+, a modified, local version of

AODV protocol for route discovery, between nodes u and v. local_aodv+ is able to add
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Algorithm 4: LocalPathConfig(i, u, v)

1 if ∃ι ∈ Nu with v ∈ Nι and luι + lιv ≤ luprevious(i,v) + lprevious(i,v)v then
2 w = arg maxι∈Nu Tι(x

j
u)

3 send join [w](i, u, v)
4 Πsici ← replace v with w

5 else
6 run local_aodv+(u, v, TTL)

more than one replacement node in the path. The main modification of local_aodv+
with respect to the traditional AODV protocol is that local_aodv+ selects the route which
provides the maximum lifetime Tw(xju) for the nodes w which are included in the route.
Specifically, this modification with respect to the classic AODV is implemented as follows:
The nodes piggyback in the route request messages the minimum lifetime Tw(xju) that
has been identified so far on the specific path. Then when the first route request message
arrives at v, instead of setting this path as the new path, v waits for a predefined timeout
for more route request messages to arrive. Then, v selects the path which provided the
max minw∈Nu

Tw(xju). The reader can find more details about the AODV protocol in [45].
Joining new paths, modifying existing paths and avoiding loops. In this subsection,

we briefly describe the functions regarding joining a new path and modifying an already
existing path for loop elimination. JoinPath(i, w, v) is the function which regulates how, for
data piece Di, a node u will join an existing path between nodes w and v and how u will
trigger a path modification and avoid potential loops which could result in unnecessary
traffic in the network. Due to the fact that the reconfigurations do not use global knowl-
edge, we can have three cases of u joining a path: (i) u is not already included in the
path (u /∈ Πsici), (ii) u is already included in the path (u ∈ Πsici), and w is preceding u in
the new path (previous(i, u) = w) with a new link (w, u), and (iii) u is already included in
the path (u ∈ Πsici), and u is preceding w in the new path (previous(i, w) = u) with a new
link (u,w). In all three cases, JoinPath sends a modification message to the next node
to join the path, with the appropriate arguments concerning the deletion of parts of the
paths, and the direction of the deletion, for avoidance of potential loops (see [46]). This
message triggers the function ModifyPath (see [46]). In case (i) it is apparent that there is
no danger of loop creation, so there is no argument for deleting parts of the path. In or-
der to better understand cases (ii) and (iii) we provide Figures 15 and 16. In those Figures
we can see how the function ModifyPath eliminates newly created loops on u from path
reconfigurations which follow unplanned network changes.

Following the loop elimination process, loop freedom is guaranteed for the cases
where there are available nodes w ∈ Nu which can directly replace v. In the case where
this is not true and LocalPathConfig calls local_aodv+ instead (Alg. 4, line 6), then the loop
freedom is guaranteed by the AODV path configuration process, which has been proven
to be loop free [47].

5.4 Performance evaluation

We implemented DistrDataFwd method and we conducted simulations in order to demon-
strate its performance. We configured the simulation environment (Matlab) according
to realistic parameters and assumptions. Table 3 presents the parameter configuration
in detail. Briefly, we assume an industrial IoT network, comprised of devices equipped
with ultra low-power MCUs like MSP430 and IEEE 802.15.4 antennae like CC2420, able to
support industrial IoT standards and protocols like WirelessHART and IEEE 802.15.4e. We
assume a structured topology (as in usual controlled industrial settings) of 18 nodes with
4 proxies which form a 2D grid with dimensions of 7.5 m × 16.0 m. We set the transmis-
sion power of the nodes for multi-hop communication to −25 dBm (typical low-power)
which results in a transmission range of 3 m. For the more expensive communication with
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Table 3: Simulation parameters.

Parameter Value
Topology

deployment dimensions (2D grid) 7.5 m × 16.0 m
|V |, |E|, |P |, δ(u, v) 18, 47, 4, 2.5− 2.8
transmission range ρu, neighborhood Nu 3 m, v, with d(u, v) ≤ 3 m

Time
τ , Lmax, TTL (local_aodv+) 1 sec, 100 ms, 2 hops
experiment duration 2000 hours

Data
percentage of consumers ci 0.05− 45%
data piece generation rate ri 1− 8 Di/τ
data piece size (incl. headers and CRC) 9 bytes

Hardware assumptions
MCU (e.g., MSP430), antenna (e.g., CC2420) ultra low-power, IEEE 802.15.4
max. battery capacity, initial energies E0

u, E0
p 830 mAh / 3.7 V, 0− 1 and 3 Wh

transmission power for euv, for ecc −25 dBm, 15 dBm
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the network controller, we set the transmission power to 15 dBm, typical of wireless LAN
settings. We set the time cycle τ = 1 second, the percentage of consumers over the
population 0.05 − 45% and we produce 1 − 8 Di/τ per consumer. In order to perform the
simulations in the most realistic way, we align the Lmax value with the official requirements
of future network-based communications for Industry 4.0 [38], and set the latency thresh-
old to Lmax = 100 ms. We set γ = 50%, the TTL argument of local_aodv+ equal to 2,
we assume a maximum battery capacity of 830 mAh (3.7 V) and equip the nodes with
energy supplies of E0

u = 0− 1 Wh and E0
p = 3 Wh. Last but not least, in order to have a re-

alistic basis for the values of the one-hop latencies luv used in the simulations, we aligned
the different luv values to one-hop propagation measurements with real devices, for dif-
ferent pairs of transmitting and receiving nodes. Specifically, we used the measurements
provided in Fig. 3b of [44].

In order to have a benchmark for our method, we compared its performance to the
performance of the PDD data forwarding method which was provided in Section 4. Due to
the fact that PDD was designed for static environments without significant network param-
eter changes, we also compare to a modified version of PDD, which incorporates central
reconfiguration when needed (we denote this version as PDD-CR). Specifically, PDD-CR runs
PDD until time t, when a significant change in the network happens, and then, all network
nodes communicate their status (Etu, euv, luv) to the network controller C by spending ecc
amount of energy. C computes centrally a new (near-optimal as shown in Section 4) data
forwarding plan and the nodes run the new plan. In our case, we run the PDD-CR recon-
figurations for each case where we would do the same if we were running DistrDataFwd.
As noted before, the conditions that trigger a change of the forwarding paths are ei-
ther node related (a node dies) or link related (change of interference which results in
εuv(τ)−εuv(τ−1)

εuv(τ) > γ)8.
Energy efficiency. The energy consumption over the entire network during 2000 hours

of operation is depicted in Fig. 17a. The energy consumption values include the energy
consumed for both the data distribution process and the reconfiguration. Our method
achieves comparable energy consumption as PDD, despite being a local, adaptive method.
This is explained by the following facts: PDD-CR requires more energy than DistrDataFwd
for the path reconfiguration process, as during each epoch alteration every node has
to spend ecc amount of energy for the configuration phase. On the contrary, in the
DistrDataFwd case, only some of the nodes have to participate in a new configuration
phase (usually the nodes in the neighborhood of the problematic node), and spend sig-
nificantly less amounts of energy. In the case of PDD, the nodes do not participate in con-
figuration phases, so they save high amounts of energy. In Fig. 17b, we can also see the
energy consumption of DistrDataFwd and PDD-CR for different percentages of reconfigura-
tions (w.r.t. the number of time cycles τ ). It is clear that the more the reconfigurations that
we have in the network, the more the gap between the performance of DistrDataFwd
and PDD-CR increases.

Data delivery rate. The data pieces lost during 2000 hours of operation are depicted
in Fig. 17c. We consider a data piece as lost when the required nodes or path segments
are not being available anymore so as to achieve a proper delivery. When a data piece
is delivered, but misses the deadline Lmax, it is not considered as lost, but we measure the
high delivery latency instead. We can see that the low energy consumption of the PDD
method comes at a high cost: it achieves a significantly lower data delivery rate than the
PDD-CR and the DistrDataFwd methods. This is natural, because as noted before, PDD com-
putes an initial centralized paths configuration and follows it throughout the entire data
distribution process. The performance of the DistrDataFwd method stays very close to the
performance of the PDD-CR method, which demonstrates the efficiency of DistrDataFwd
in terms of successfully delivering the data pieces.

Maximum data access latency. The maximum data access latency during 2000 hours
of operation is depicted in Fig. 17d. The measured value is the maximum value observed

8The qualitative behavior would not change in case of additional reconfiguration events, which simply in-
crease the number of reconfigurations.
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Figure 17: Performance results.

among the consumers, after asynchronous data requests to the corresponding proxies.
PDD does not perform well, due to the fact that it is prone to early disconnections without
reconfiguration functionality. The fluctuation of PDD-CR’s curve is explained by the re-
computation from scratch of the data forwarding paths which might result in entirely new
data distribution patterns in the network. DistrDataFwd respects the Lmax threshold for
most of the time, however at around 1700 hours of network operation it slightly exceeds
it for a single proxy-consumer pair. On the contrary, PDD-CR does not exceed the thresh-
old. This performance is explained by the fact that DistrDataFwd, although efficient, does
not provide any strict guarantee for respecting Lmax, for all proxy-consumer pairs, mainly
due to the absence of global knowledge on the network parameters during the local
computations. PDD-CR, with the expense of additional energy for communication, is able
to centrally compute near optimal paths and consequently achieve the desired latency.
There are two simple ways of improving DistrDataFwd’s performance in terms of respect-
ing the Lmax threshold: (i) insert strict latency checking mechanisms in the local_aodv+
function, with the risk of not finding appropriate (in terms of latency) path replacements,
and thus lowering the data delivery ratio due to disconnected paths, and (ii) increase the
TTL argument of local_aodv+, with the risk of circulating excessive amounts of route dis-
covery messages, and thus increasing the energy consumption in the network. Including
those mechanisms is left for future work.
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6 Conclusions and future directions

D2.4 describes the work carried out in Task T2.4 with respect to the proposed Smart
Data Management and Distribution mechanisms within AUTOWARE, until month 18 of the
project. Solutions which determine the locations which are appropriate to move data to
were presented, as well as the novel concept of a distributed Data Management Layer,
whereby nodes can cooperate so as to store data within the network. Emphasis was
given to the maximization of the network lifetime, the data access latency constraints
and the maintenance of the network configuration in a way such that application re-
quirements are met, even after important network operational parameters change due
to some unplanned events. Finally, performance results will be also provided, coming
from both experiments with real devices and large-scale simulations.

Within Task 2.4, the next steps include further development and improvement of the
Smart Data Distribution mechanisms. The main target objective will be the precise adap-
tation to the application requirements of diverse automation processes. The develop-
ments can range from the design of additional heuristics which capture different aspects
of the automation processes to the introduction of self-adaptive data management and
distribution proposals which also contribute towards the design of processes that are
more capable to dynamically reconfigure. Also, we plan to further extend the adap-
tive path reconfiguration and data forwarding process, so that it takes into account not
only ”negative” changes in the network, but also “positive” changes, such as addition
of nodes in the topology. Finally, we opt for exploring the scalability of the proposed
schemes, especially in the cases of larger networks and more dynamic topologies and
parameters, which might affect the performance of the designed algorithms.
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