
 H2020-EU 2.1.1. Ref 723909 - Page 1 / 48

D3.2b AUTOWARE Software Defined Autonomous

Service Platform development

Document Owner FhG

Contributors FhG, imec, JSI, Robo, SmartFactory, Tekniker

Reviewers UMH

Dissemination level PU Dissemination nature R

Date 27/02/2019 Version 1.0

Ref. Ares(2019)3176415 - 14/05/2019

Deliverable D3.2a

 H2020-EU 2.1.1. Ref 723909 - Page 2 / 48

Version History

Nr. Date

Author

(Organization) Description

0.1 30/11/2018 FhG Deliverable structure and ToC

0.2 13/12/2018 IMEC, SFKL Contribution to Chapter 2.3 and 6, Update

Chapter 2.2 and 5

0.3 14/12/2018 FhG Update of chapter 4

0.4 20/12/2018 JSI Update Chapter 2.1 and 3

0.5 04/02/2019 TEKNIKER Contribution to chapter 7

0.6 13/02/2019 FhG First consolidated version

0.7 20/02/2019 UMH Internal review

0.8 26/02/2019 JSI, SFKL,

TEKNIKER, FhG

Version with int. reviewer corrections

1.0 27/02/2019 FhG Final Version

Deliverable D3.2a

 H2020-EU 2.1.1. Ref 723909 - Page 3 / 48

Project partners

Software Quality Systems SQS

Asociación de Empresas Tecnológicas Innovalia INNO

Technologie Initiative SmartFactoryKL e.V. SmartFactory

Jožef Stefan Institute JSI

TTTech Computertechnik AG TTT

Consiglio Nazionale Delle Ricerche CNR

imec imec

PWR Pack International B.V PWR

Robovision Robovision

Universidad Miguel Hernández UMH

Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. FhG

Blue Ocean Robotics BOR

Fundación Tekniker Tekniker

SMC Pneumatik GmbH SMC

Deliverable D3.2a

 H2020-EU 2.1.1. Ref 723909 - Page 4 / 48

Executive Summary

This deliverable is the updated version of deliverable D3.2a “AUTOWARE Software

Defined Autonomous Service Platform development” which was submitted in M18. The

document provides an overview of the development plan of the services that will be

made available through the Software Defined Autonomous Service Platform (SDA-SP)

and will be used for the implementation of the industrial and neutral use cases in WP5.

The service development partners of WP3 in AUTOWARE are using different

infrastructures and platforms (ROS, CloudiFacturing and GPflowOpt) to develop and

provide their services to the AUTOWARE project. From the conceptual point of view the

SDA-SP can be seen as a generalized reference architecture to realize cognitive

applications and spans above individual platforms to integrate all AUTOWARE services

in one architectural representation.

Changes to the development plan of the services related to the implementation of the

main three WP3 assets (a reconfigurable robotic work cell, a mixed or dual reality

supported automation to implement an effective and flexible collaboration between

humans and robots, and a multi-stage production line) are presented in this document.

Additionally two new use cases are added:

 Neutral experimentation infrastructure for intelligent automation applications for

robotic industrial scenarios and

 Industrial Cognitive Automation Validation

This document describes how each one of these two developments instantiates the

reference architecture of the SDA-SP in order to provide use-case specific reference

implementations in the project.

The next step will then be the revision of the reference implementation of the SDA-SP,

which were documented in the deliverable D3.3a, taking into account the changes

made on the development plan described in this document.

Keywords

Service platform, information systems in industrial production, cyber-physical production

systems (CPPS), (re)configurability, reference architecture

Deliverable D3.2a

 H2020-EU 2.1.1. Ref 723909 - Page 5 / 48

Table of Contents

1 Introduction ... 10

1.1 Scope of the deliverable ... 10

1.2 Relation to existing platforms .. 11

1.3 Document Structure .. 12

1.4 Target audience .. 13

2 Existing Software Defined Service Platforms ... 14

2.1 ROS ... 14

2.1.1 ROS-industrial .. 14

2.1.2 ROS 2 .. 15

2.2 CloudiFacturing ... 15

2.2.1 General Description .. 15

2.2.1 Interface .. 16

2.3 GPflowOpt .. 17

3 Implementation Plan of Autonomous Robotic Work Cell Services 19

3.1 Robotic services integration – deployment of ROS in a service based structure

 19

3.2 Implementation plan to provide three scales integration 20

4 Implementation Plan of Dual Reality Management Services 23

4.1 Local Services ... 23

4.1.1 Cognitive Assembly Monitoring and Control ... 23

4.1.2 Dual Reality Control .. 24

4.1.3 3D Intention Visualization ... 25

4.1.4 Sensor Processing .. 25

4.2 Cloud Services based on CloudiFacturing ... 28

4.2.1 Object Recognition .. 28

4.2.2 3D Quality Control ... 29

5 Implementation Plan of Smart Production Line Services ... 30

5.1 Local Services ... 30

Deliverable D3.2a

 H2020-EU 2.1.1. Ref 723909 - Page 6 / 48

5.1.1 Product Identification ... 30

5.1.2 Object Detection .. 31

5.1.3 Non-Real-Time CPS Controller... 33

5.1.4 Safety Service ... 33

5.1.5 Real-Time CPS Controller ... 34

5.1.6 PLC and OPC-UA server: .. 35

5.2 HPC Services ... 36

5.2.1 Product Tracking & Tracing ... 36

5.2.2 Integration into the existing infrastructure .. 36

5.3 Edge Services ... 37

5.3.1 3D Factory Visualization ... 37

5.3.2 Process Optimization .. 38

5.3.3 Training Object Model .. 39

6 Implementation Plan of Cognitive Automation Validation Services 40

6.1 Local Services ... 41

6.1.1 Trajectory planning, camera image processing and deep learning vision

detection ... 41

6.2 HPC Services ... 41

6.2.1 Deep learning vision learning services .. 41

6.3 Edge Services ... 42

6.3.1 Rapid reconfiguration of deep learning based vision systems services 42

7 Implementation Plan of Collaborative Robotics Services ... 43

7.1 Local Services ... 44

7.1.1 Navigation system ... 44

7.2 Cloud Services .. 46

7.2.1 Standard input/output communications to ROS .. 46

8 Summary and Outlook .. 47

Deliverable D3.2a

 H2020-EU 2.1.1. Ref 723909 - Page 7 / 48

List of Figures

Figure 1: Overview over all instantiations of the reference architecture and service

implementations based on ROS, CloudiFacturing and GPflowOpt. 12

Figure 2: CloudFlow workflow editor .. 15

Figure 3: Improved Workflow User Interface ... 17

Figure 4: Architectural structure of the planned autonomous robotic work cell

implementation. Above: functional view, below: SW and communication

implementation view. .. 22

Figure 5: Visualization in PROTÉGÉ of an example of a semantic model 24

Figure 6: Design of the Fraunhofer 3D laser scanner ... 26

Figure 7: Fraunhofer 3D Laser Scanner with first result phase images on a target object 26

Figure 8: Intermediate scans of a pneumatic cylinder ... 27

Figure 9: ADOMe second prototype with components ... 30

Figure 10: Components for product identification .. 31

Figure 11: Data processing components for object detection .. 32

Figure 12: Components of the Non-Real-Time CPS Control... 33

Figure 13: Real-Time capable server architecture ... 35

Figure 14: Exemplary implementation of the Integration BUS ... 37

Figure 15: DyVisual visualizing tool .. 38

Figure 16: Instantiation of services provided for Cognitive Automation Validation 40

Figure 17: Example of the reconfiguration service in process for a constrained problem.

 ... 42

Figure 18: Instantiation of services provided for autonomous navigation of mobile robots

 ... 44

Figure 19: Component Diagram of the navigation module .. 45

Figure 20: OPC-UA services implementation for Autonomous navigation 46

file:///E:/Projekte/Autoware/WP3/D3.2%20-%20Software%20Defined%20Autonomous%20Service%20Platform%20development/D3.2b/D3.2b_AUTOWARE_Software_Defined_Autonomous_Service_Platform_development_V0.8.docx%23_Toc2175211

Deliverable D3.2a

 H2020-EU 2.1.1. Ref 723909 - Page 8 / 48

Acronyms

AI Artificial Intelligence

API Application Programming Interface

CAD Computer Aided Design

CATIA Computer-aided three-dimensional interactive

application: a CAD format developed by the French

company Dassault Systèmes

CPS Cyber-physical system

CPPS Cyber-Physical Production System

DLL Dynamic Link Library

ERP Enterprise Resource Planning

FIWARE Open cloud-based platform for cost-effective creation

and delivery of innovative applications and services

GPU Graphics Processing Unit

GUI Graphical User Interface

HPC High-Performance Computing

IIB IBM Integration BUS

IoT Internet of Things

JSON JavaScript Object Notation

JT Jupiter Tesselation: an ISO-standardized 3D data format

used for product visualization, collaboration and CAD data

exchange

MES Manufacturing Execution System

MQTT Message Queuing Telemetry Transport

Deliverable D3.2a

 H2020-EU 2.1.1. Ref 723909 - Page 9 / 48

OPC Open Platform Communications

OPC UA OPC Unified Architecture

OS Operating System

OWL Web Ontology Language

PMI Product Manufacturing Information

PLC Programmable Logic Controller

PLM Product Lifecycle Management

PLMXML Siemens PLM Software format for facilitating product

lifecycle interoperability using XML

RDF Resource Description Framework

resCNN Residual Convolutional Neural Network

REST Representational State Transfer

RFID Radio Frequency Identification

ROS Robot Operating System

SDA-SP Software Defined Autonomous Service Platform

SDK Software Development Kit

TPU Tensor Processing Unit

W3C World Wide Web Consortium

XML eXtensible Markup Language

Deliverable D3.2a

 H2020-EU 2.1.1. Ref 723909 - Page 10 / 48

1 Introduction

The specification of the reference architecture for the Software Defined Autonomous

Service Platform (SDA-SP) was introduced in Deliverable D3.1 and laid the foundation

for the upcoming activities in WP3. In deliverable D3.2a this reference architecture was

instantiated by the main three WP3 assets:

(i) A reconfigurable robotic work cell,

(ii) A dual reality supported automation framework as an enabler for human-robot

collaboration and

(iii) A multi-stage production line system.

Their instantiations and their services were described in detail in addition to their

development plans. Based on D3.1 and D3.2a, this document D3.2b provides an

updated description of the development plan of the SDA-SP with its services and

platforms.

Evaluation of the individual pilots in WP5 and associated KPIs, especially the degree of

fulfilment of the business and technical KPIs, gave an indication concerning potential

improvements and further developments of the reference implementations of the SDA-

SP. Consequently, the updated version of the deliverable D3.2 provides an overall

update of the existing reference implementations and additionally includes two more

instantiations to complete the overall AUTOWARE approach. These reference

implementations are linked with the following AUTOWARE use cases:

(iv) Neutral experimentation infrastructure for intelligent automation applications for

robotic industrial scenarios (owned by the AUTOWARE partner TEKNIKER);

(v) Industrial Cognitive Automation Validation (owned by the AUTOWARE partners

imec and RoboVision)

Since the AUTOWARE architecture is open and thus extensible, the inclusion of two

more use cases gives the opportunity to reveal a statement about the

representativeness and applicability of the AUTOWARE architecture.

1.1 Scope of the deliverable

This deliverable is linked with the task T3.4 Reference implementation for the Software

Defined Autonomous Service Platform (M13-M30, FhG lead). The task T3.4 is described in

the Description of Work (DoW) as

At the end of the first and final iteration of the developments, T3.4 will proceed

with the integration of the different components into a reference

Deliverable D3.2a

 H2020-EU 2.1.1. Ref 723909 - Page 11 / 48

implementation of the Software Defined Autonomous Service Platform. This task

will also implement the enablers and interfaces needed at this layer to connect

the Software Defined Autonomous Service Platform with the Physical,

Connectivity & Data Management framework in WP2 and the Open CPPS

Ecosystem implemented in WP4.

1.2 Relation to existing platforms

The service development partners in WP3 are using different infrastructures and

platforms to develop and provide their services to the AUTOWARE project.

Functionalities are implemented as services which can then be combined and

orchestrated to provide specific factory solutions. The services to be implemented will

be mapped on the AUTOWARE architectural layers to create instantiations of the

reference architecture. Each one of these individual reference implementations of the

SDA-SP together with corresponding services in the different architectural layers will be

used to commission the AUTOWARE pilots in WP5.

Due to advances in recent EU research projects, the AUTOWARE project will use the

more recent update of the CloudFlow technology environment. It is developed in the

CloudiFacturing project, which is more focused on the manufacturing industry.

Figure 1 depicts the individual instantiations and the different reference service

implementation platforms. The existing platforms being used in WP3 are:

 ROS (Robot Operating System) is used by JSI and TEKNIKER

 CloudiFacturing is used by SFKL and FhG

SFKL will provide core infrastructure components such as Workflow Manager or High

Performance Computing (HPC) hardware for the AUTOWARE project.

 GPflowOpt used by imec

Deliverable D3.2a

 H2020-EU 2.1.1. Ref 723909 - Page 12 / 48

Figure 1: Overview over all instantiations of the reference architecture and service

implementations based on ROS, CloudiFacturing and GPflowOpt.

1.3 Document Structure

The document is structured as follows: Chapter 2 introduces and states the newest

updates on the existing platforms mentioned above (ROS, CloudiFacturing and

GPflowOpt) that are being used in WP3 to implement the AUTOWARE cognitive

services. Chapters 3, 4 and 5 continue with dedicated implementation plans for the

three main WP3 technology developments: a reconfigurable robotic work cell, dual

reality supported automation, and a multi-stage production line by using digital

product memory technologies.

In addition two new use cases: Neutral experimentation infrastructure for intelligent

automation applications for robotic industrial scenarios and industrial cognitive

automation validation are described in chapter 6 and 7 with their instantiation of the

SDA-SP reference architecture and the development plan for their services related to

Deliverable D3.2a

 H2020-EU 2.1.1. Ref 723909 - Page 13 / 48

cognitive automation validation and collaborative robotics. Chapter 8 gives an overall

summary of this document and provides an outlook for future activities.

1.4 Target audience

This document is mainly intended for developers of the software defined autonomous

service platform. For example, automation developers and integrators of the use cases

should follow the directions given here. It also includes information for the providers of

technical enablers (e.g. edge computing, deterministic communication), to support

the design of enablers with appropriate characteristics.

Deliverable D3.2a

 H2020-EU 2.1.1. Ref 723909 - Page 14 / 48

2 Existing Software Defined Service Platforms

This section gives an updated overview on the different software infrastructures that are

currently being used in the AUTOWARE project to implement the services for the SDA-SP.

2.1 ROS

JSI instantiated the general AUTOWARE software architecture for the case of cyber

physical production systems that deal with functional layers ranging from supervision

and higher-level control down to hard real-time low control (and sensing) of devices

that are involved in actual physical shop-level production. We are dealing with

production processes involving manipulation of work pieces and/or tools. Advanced

production of this type often – not always – involves robot manipulators, beside others

specific production technology devices. We selected ROS, a set of tools and libraries

that runs on top of an operating system. It is a kind of SDK (Software Development Kit)

for robotic applications, thus a middleware software component. In AUTOWARE, we use

it as a main robotic software building block/component to design a service based

architecture, according to principles developed and described in the deliverable D3.1.

It covers functionalities as hardware abstraction, device drivers, libraries, visualizers,

message-passing, and package management. In our context, the most important

single ROS’ characteristics is unified inter-process communication.

In the previous release of this deliverable (D3.2a) we described the requirements of

such software systems, explained the selection of ROS and gave an overview of its

advantages and shortcomings. In this final delivery that is dealing with the plan to

implement the various features of the robotic oriented service platform, we will describe

the “institutional” ROS related community activities to advance “standard” or “first” ROS

capabilities and address its shortcomings.

2.1.1 ROS-industrial

This is an initiative that bases on “standard” ROS distributions. It address predominantly

the shortcomings that made ROS less attractive to industrial users in actual production

environments, in contrast with its significant acceptance and use in the academia and

in research [Gerkey, 2017, Tellez, 2018]. ROS-Industrial initiative is also an open-source

project; its main result is a verified collection of software, the so called “ROS-Industrial

repository”, that provides modules and libraries that are robust, reliable and simple

enough, so that they can be used for actual production and manufacturing

applications.

Deliverable D3.2a

 H2020-EU 2.1.1. Ref 723909 - Page 15 / 48

2.1.2 ROS 2

This is the “next” ROS, conceived and developed by some individuals that were

involved in the development of the “first” ROS and by a community that intensively uses

it. With ROS 2, they address all shortcoming of ROS [Gerkey, 2017, Tellez, 2018]; the last

ROS 2 version was released in December of 2018, the next one will be in June of 2019.

There is a public roadmap of planned functionalities to be implemented, including

porting of ROS packages to ROS 2.

In chapter 3, we will describe the implementation plan for the Autonomous Robotic

Work Cell Services. It initially describes the selection among ROS, ROS-Industrial and ROS

2. The plan also position ROS inside the overall AUTOWARE service platform architecture.

2.2 CloudiFacturing

2.2.1 General Description

Due to advances in recent EU research projects, the AUTOWARE project will use the

more recent update of the CloudFlow technology environment as it is developed in the

CloudiFacturing project. Aimed at the manufacturing industry, it includes the CloudFlow

workflows (as described in more detail in Deliverable D3.2a) as a set of calculations,

simulations, and analytics jobs for complex engineering and manufacturing tasks which

are executed in a cloud environment as shown in Figure 2.

Figure 2: CloudFlow workflow editor

The manager allows arbitrary software to be encapsulated into web services or high-

performance computing (HPC) jobs, which can be arranged graphically into workflows

and executed and monitored using a graphical web interface (as described below in

Section 2.2.1). The advantage of using the CloudiFacturing solution in contrast to the

pure CloudFlow solution lies in the improved technical interoperability of the Cloudflow

components and the integration into a unified user interface.

Deliverable D3.2a

 H2020-EU 2.1.1. Ref 723909 - Page 16 / 48

This architecture includes the User Management component, the repository for

executable artefacts and the workflow and application mediator as well as the data

transfer and browsing system.

These components can be described as the following:

1. The User Management component provides a single entry point for the complete

solution. Through this logging in point, it is possible to access all integrated

technology stacks.

2. The Repository for Executable Artefacts stores information on all applications,

workflows etc. including metadata about the technology stacks an artifact is

connected to. This allows users to view artefacts relying on different technology

stacks in exactly the same way.

3. The workflow and Application mediator acts as a unified execution interface for

software artefacts registered in the repository. The mediator translates repository

metadata of registered artefacts into execution calls to the different technology

stacks.

4. The Data Transfer and Browsing system allows data transfer between storages

connected to different technology stacks. It makes it possible to create “meta

artefacts” which consist of several artifacts from different technology stacks.

2.2.1 Interface

Based on the architecture described above, an input mask was created that makes it

possible to deploy services in a workflow. This deployment has been simplified and is

based on Docker [Merkel, 2014] (software that performs system-level virtualization) to

containerize components. A screenshot to demonstrate how these services can be

implemented is shown in Figure 3.

Deliverable D3.2a

 H2020-EU 2.1.1. Ref 723909 - Page 17 / 48

Figure 3: Improved Workflow User Interface

2.3 GPflowOpt

GPflowOpt is a powerful optimization framework, which distinguishes itself in three

aspects from other more academic alternatives. First the fact that it builds on modern

frameworks allowing for fast computation which is required in a manufacturing setting,

reducing the changeover times by rapid reconfiguration of the artificial intelligence (AI)

systems. Secondly, the quality of the implementation that reaches 99% code coverage

and thirdly, the ease of use, allowing adoption for multiple scenarios without requiring

expert knowledge. GPflowOpt offers a representational state transfer application

programming interface (RESTFull API) in which JSON (JavaScript Object Notation)

objects are used as the standard communication protocol.

Deliverable D3.2a

 H2020-EU 2.1.1. Ref 723909 - Page 18 / 48

With regard to D3.2a, the main work on GPflowOpt has been done integrating several

development branches into the master branch to allow for further functionality in the

core software. There have been no changes with regard to the services and API as

discussed in deliverable D3.2a. In addition, we received several bug reports both

internal and external which have been the main focus in the last months prior to this

deliverable.

Deliverable D3.2a

 H2020-EU 2.1.1. Ref 723909 - Page 19 / 48

3 Implementation Plan of Autonomous Robotic Work Cell Services

One of the JSI’s project tasks is to instantiate and implement the AUTOWARE software

architecture, developed in other work packages, for the case of CPPS involving

robotics. In the first WP3 deliverable, we defined the principles and structure of the

software defined autonomous service platform; accordingly, JSI will implement a

robotic work cell control system as part of a services-based framework. Also, JSI hosts,

maintains and runs one of AUTOWARE’s neutral facilities, a reconfigurable robot cell,

where all these principles will be used and demonstrated. The activities related mainly

to the mechanical/hardware design and disposition have been mostly (but not

exclusively) done in a concurrent ReconCell project; the design and implementation of

appropriate service as a software architecture and the design and inclusion of specific

enablers (part of the WP4) is being mainly done as part of AUTOWARE.

3.1 Robotic services integration – deployment of ROS in a service based

structure

Due to the robotic nature of the CPPS we are targeting, we choose ROS as basic

robotic middleware. We described its advantages in the previous deliverable report

release. In chapter 2, we described two current additional initiatives, “ROS-industrial”

and “ROS 2” that address the “first” ROS shortcomings for use in an industrial production

environment. All three versions are currently maintained and being developed or

updated. We investigated thoroughly all three versions for use in the AUTOWARE WP3

tasks, taking into account the project’s resources and most importantly the project’s

time schedule. In the following we recap our findings and technical solutions selected

for our AUTOWARE implementation.

 ROS and ROS 2 are both excellent as basic framework for task decomposition and

distribution by supporting transparently inter-process and inter-computer messaging

and other related functionalities.

 ROS does not address the real-time and related lower level robot/device control

requirements adequately out of the box.

 “ROS-industrial” does in principle address real-time and control requirements but

presently not enough for practical use; from the list of supported robots and

functionalities in December 2018 (regarding ROS module functionalities for real-time

robot control/sensing), we see that a limited number of commercial robots is

supported; the type of robot control commands, e.g. trajectory control and

force/torque control is even more limited.

Deliverable D3.2a

 H2020-EU 2.1.1. Ref 723909 - Page 20 / 48

 ROS 2 supports real-time requirements adequately.

 ROS 2 development is presently (December 2018) concentrated and progressing

very well on core functionalities; it is lagging in the transfer of useful functionality

modules (to name some, “MoveIt!” and “Gazebo”) from ROS to ROS 2.

Based on our assessment and findings, our plan regarding the implementation of

robotics middleware in the software defined service platform is the following:

 We will embrace “first” ROS as middleware; in this way, we can rely on existing

functionality packages mentioned before;

 We will develop specific packages for advanced functionalities, e.g. those related

to automated re-configurability and cognitive capabilities; in doing this, we will stick

to basic/standard ROS functionalities, so that the foreseen future porting from ROS

to ROS 2 will be easier.

 As ROS doesn’t support real-time control functionality at the level required for robot

control, we will develop a dedicated solution to resolve this issue.

3.2 Implementation plan to provide three scales integration

It is one of WP3 goal to provide integration of CPSS at three scales (edge, cloud, and

HPC). In this sense we planned our implementation according to following principles

and design choices.

 The main work cell control system will use ROS, thus it will run on a Linux-based

operating system. The implementation will run on one or more PC-class computers.

The number of computers and their power will be proportional to the requirements

of the algorithms to be used for a specific production use-case application. Here

we will leverage ROS capability to seamlessly distribute ROS nodes for an

application on one or more computers as needed.

 Based on the initial choices, we could also implement the main work cell control

system on a number of the “fogNode”s, the fog/edge units provided as an enabler

by an AUTOWARE partner. For the time being this is not possible due to the relatively

lower computing power on available fogNode models (based on Intel Atom

processor) than it is necessary by algorithms for JSI’s AUTOWARE use cases.

However, as new versions with more powerful processors will be introduced, it will be

possible to seamlessly move all or a part of the work cell control system on one or

more of those “fogNode”s.

 We established that ROS does not support hard real time that is necessary for the

lower level control of manipulation-capable production hardware as robots,

positioning devices, etc. (although it is supported in ROS 2 and we will eventually

switch to). To achieve the control/sensing real-time functionality, we designed and

Deliverable D3.2a

 H2020-EU 2.1.1. Ref 723909 - Page 21 / 48

devised a so-called “server for real-time robot sensing and execution” (further: SLRT

server), one per robot. The additional functionality we implemented in the SLRT

server is production hardware abstraction. It functions as an interface between

standard ROS node’s sensing and control commands and proprietary low level

control of these devices (e.g. proprietary motor drives for robot joint motors).

The SLRT software code is generated with our application preparation system for a

specific production hardware. For example, in our use case applications, we

generated and implemented a SLRT server for Universal Robots UR10, used in our

work cell. We presently run them on a PC compatible computer. The SLRT could also

run on the fogNode, provided it offers the possibility to boot the machine to the

real-time kernel, embedded in the SLRT distribution.

 To provide integration of the work cell local components with other distributed

and/or remote components at the edge and in the Cloud scale, we will implement

a ROS IoT (Internet of Things) communication layer. In our AUTOWARE

implementation it will provide MQTT (Message Queuing Telemetry Transport) and

OPC UA (OPC Unified Architecture) based connectivity of ROS nodes to external

systems in the edge/fog or in the Cloud. The connectivity will be transparent, that is,

the ROS nodes will seamlessly use the same mechanism for ROS-IoT communication

as for “internal” ROS-ROS node communication.

This mechanism could be used for communication with an external service or with

an externally implemented application. In a typical CPPS application, this

mechanism could be used for duties that in a traditional control scheme qualify as

MES (Manufacturing Execution System) or ERP (Enterprise Resource Planning)

functionalities; however, in contrast with traditional implementations, in AUTOWARE

architecture they do not have to follow through the traditional hierarchical

communication chain.

 To provide integration at the HPC scale, we will conceive and implement a

connection between local work cell components and a HPC level computing

facility that is essentially an edge node providing HPC capable hardware and

software.

Due to the large amount of data that has to be exchanged with the HPC node in

our use cases, we will use a suitable transfer mechanism (e.g. a IoT protocol as MQTT

would not be suitable).

As part of WP4, we will provide a demonstration of the implementation on the

example of pre-training of deep learning networks. This is essential for cognitive

functionalities, e.g. for those involving vision processing.

As described in the first release of the D3.2 delivery, the implementation is planned in

two steps:

Deliverable D3.2a

 H2020-EU 2.1.1. Ref 723909 - Page 22 / 48

 The first step is to decompose all functionalities into tasks with a modular structure

while observing related principles from traditional software engineering like

modularity, abstraction, anticipation of change, incremental development and

consistency.

 In the second step, we will implement modules with emphasis on service based

operation. The main common building block will be the ROS. We will provide for

connection with external platforms e.g. edge/fog, Cloud, and HPC.

The two steps can be illustrated by the schemas in Figure 4.

Figure 4: Architectural structure of the planned autonomous robotic work cell implementation.

Above: functional view, below: SW and communication implementation view

Deliverable D3.2a

 H2020-EU 2.1.1. Ref 723909 - Page 23 / 48

4 Implementation Plan of Dual Reality Management Services

The implementation plan of the Dual Reality Management Services foresees to

implement six high-level services, which were first described in Deliverable D3.2a

Software Defined Autonomous Service Platform development. These high-level services

consist of a combination of single services, which we listed and described in Deliverable

D3.1 Reference Architecture for Software Defined Autonomous Service Platform.

Descriptions and changes or updates to our services are listed in the following sections.

Four services are instantiated as local services since they are constrained by real-time

requirements or do not need external processing. Those are:

 Cognitive Assembly Monitoring and Control

 Dual Reality Control

 3D Intention Visualization

 Sensor Processing

Two services can be outsourced to run on a cloud server. In this project, we make use

of the CloudiFacturing platform to propagate our cloud services:

 Object Recognition

 3D Quality Control

4.1 Local Services

4.1.1 Cognitive Assembly Monitoring and Control

The Cognitive Assembly Monitoring and Control service foresees to make existing

product engineering and production planning data available for a secondary use,

namely for cooperative assembly tasks between humans and robots. It can be used to

perform automatic extraction of product engineering data (i.e. 3D CAD – computer

aided design – files) and production planning data (i.e. structured textual data

describing the manufacturing execution and the assembly process) for individualized

products / prototypes from a PLM (Product Lifecycle Management) system. In addition,

the service performs a consistent semantic mapping of product engineering and

production planning data including 3D virtual models of tools and assembly parts on

cognitive models. As a result, we get a semantic description of the assembly process

incorporating the 3D representations of the assembly steps.

These semantic models can then be queried to extract information about the assembly

workflow and related geometry data.

Deliverable D3.2a

 H2020-EU 2.1.1. Ref 723909 - Page 24 / 48

4.1.1.1 Implementation Plan

The implementation plan for the

Assembly Monitoring and Control

Service foresees to incorporate

World Wide Web Consortium

(W3C) standards to construct our

domain models. We use the Web

Ontology Language (OWL),

which uses the Resource

Description Framework (RDF) as

basis, as knowledge

representation language for

creation and authoring of our

semantic model. The semantic model is filled with information about the production

planning data extracted from eXtensible Markup Language (.XML) or Siemens PLM

Software XML format (.PLMXML) files and additional referenced geometry data (e.g.

Jupiter Tesselation (.JT) or Computer-aided three-dimensional interactive application

(.CATIA) files). Alternatively the semantic model can be easily viewed and edited

manually with a variety of ontology editors, e.g. PROTÉGÉ [Musen, 2015] (Figure 5). To

make use of the knowledge stored in the semantic model the service provides a query

interface and rule engines. In D3.2a we listed RDF4J as framework to process the

queries. However, we revised the query interface to work more seamlessly and more

effective with our dual reality application based on C++. We decided upon owlready2

[Lamy, 2017] which is an ontology programming interface. This open-Source software

allows ontology-oriented programming in Python, and can be easily embedded in our

application.

4.1.2 Dual Reality Control

The Dual Reality Control Service is able to model dynamic virtual environments and

enrich these with virtualized physical production environments (Augmented Virtuality).

Virtual environments and objects (e.g. assembly parts, production tools) are retrieved

from the PLM System. The service receives information, which is captured by 2D/3D

sensors, about the real world and transforms the input to virtualized real object

representations. The service then connects real processes with virtual processes and

thus allows a continuous synchronization between the real and virtual environment. It

Figure 5: Visualization in PROTÉGÉ of an example of a

semantic model

Deliverable D3.2a

 H2020-EU 2.1.1. Ref 723909 - Page 25 / 48

should be noted that virtual objects could also influence the behavior of real objects.

By controlling the behavior of the real physical production environment, the service is

able to react directly on virtual objects. As a result, the Dual Reality Control service

creates an Augmented Virtual Environment Model containing objects from real und

virtual environments.

4.1.2.1 Implementation Plan

To realize the service we developed a data structure to represent the Scene model,

which is capable of storing and combining different data sources (CAD models and

real world input, e.g. scan point clouds, meshes etc.) in one representation. A CAD

loader and converter is incorporated to fill the scene with models. For the virtualization

of objects from the real world, we process scans or images of the physical environment,

perform detection and classification of objects based on the object recognition service

and then translate virtualized objects into the scene model. This guarantees the

continuous synchronization of real physical production environments and the virtual

world.

4.1.3 3D Intention Visualization

3D intention visualization uses real and virtual world information for the visual

communication of the entire assembly process and helps understanding the next steps

in the cooperative assembly process by animating and simulating assembly instructions.

In this way, users are well informed and able to control the entire assembly process. It

also provides the possibility to the manufacturer to explore the whole assembly process

by manually stepping through the manufacturing steps and viewing assembling

information like part names and handling instructions.

4.1.3.1 Implementation Plan

The service will be integrated into an OpenGL-based application [Khronos Group, 1992]

to visualize the collaborative working station and show animations and simulations of

assembly instructions. In addition, a visualization of upcoming assembly steps is

provided. Also an explorations mode is provided. The augmented virtual environment

model serves as visualization input and the semantic model provides the information for

the subsequent assembly steps.

4.1.4 Sensor Processing

Concerning the task of collaborative assembly of pneumatic cylinders, a sensor is used

to support the human during the quality assessment, such as classifying the current

assembly state and verifying that construction parts are correctly attached at the right

Deliverable D3.2a

 H2020-EU 2.1.1. Ref 723909 - Page 26 / 48

place and within a given measurement threshold. This process relies on scanned 3D

data, point clouds in particular. Depending on type and complexity of the

measurement task, the point cloud must be provided in different quantity (e.g.,

covering larger or smaller parts of the assembly object) and precision (e.g., 1mm or

0.05mm). To match these requirements while minimizing the scanning time, a 3D optical

sensor based on structured laser light (line sectioning and space time analysis) is

developed within this project. Figure 6 shows the design of the 3D laser scanner.

Figure 6: Design of the Fraunhofer 3D laser scanner

To ensure a high density of the resulting 3D point clouds and a low scanning overall

time duration, the scanner operates at high frequency up to 300Hz. Hence, the low-

level data processing, such as the laser line sectioning, retrieval and fusion of camera

frames into a 3D point cloud must be carried out at corresponding frequency.

Therefore, this low-level scan processing service must be locally and synchronously

executed on a control PC and has to be directly connected with the scanner

hardware and the robotic positioning system. In addition to 3D point clouds, the

scanner provides also focused 2D color images for special quality assessment tasks,

such as scratch, burr or spill detection from milling and drilling tasks.

Figure 7 shows the assembled 3D scanner with first results of a laser swipe on a target

object producing a colored phase image.

Figure 7: Fraunhofer 3D Laser Scanner with first result phase images on a target object

Deliverable D3.2a

 H2020-EU 2.1.1. Ref 723909 - Page 27 / 48

This single image is then further processed to form a 3D scan of a single surface patch

and multiple scan patches are combined to the complete 3D model of the object. The

accuracy of the laser scanner was further improved by an additional post processing

step using a mesh matching algorithm for aligning single scans containing consistent

surface patches of the target object. To achieve this we combined an iterative closest

point approach with a method derived from mesh less deformation techniques called

shape matching. Shape matching fits a geometry mesh into a deformed version and

computes the necessary transformation matrix for a best match in a single step.

The resulting algorithm is still iterative, however treating the found closest points as a

“deformed” view of the points to be aligned allows to compute the transformation for

the next iteration based on shape matching. This way the accuracy of the scanning

process can be increased even in bad conditions. Figure 8 shows intermediate

scanning results, left: without alignment, and right: after aligning single patch scans

producing a more compact and accurate 3D model.

Figure 8: Intermediate scans of a pneumatic cylinder

The real-time sensor data is processed on-site forming a consistent 3D scan of the

object that is then forwarded to other services, e.g., registration, classification and

measurement, which can then potentially run remotely on the cloud.

4.1.4.1 Implementation Plan

The following implementation steps are carried out in successive order:

Deliverable D3.2a

 H2020-EU 2.1.1. Ref 723909 - Page 28 / 48

 Design of the 3D laser scanner, component selection, hardware interfacing and

integration

 Implementation of the scanner calibration method for estimation of intrinsic and

extrinsic sensor parameters

 Component for calibration of robotic positioning systems for scanners: hand-eye

and turntable calibration

 Higher level interfacing with central workflow management system

 Improve scanning quality and robustness by advanced calibration and 3D

matching algorithms

4.2 Cloud Services based on CloudiFacturing

4.2.1 Object Recognition

Many existing shape representations describe actual shapes, with visual and material

properties. However, applications often require enhanced shape properties. For

example, shape structure information, such as segmentation or label information, can

help to relate the parts of a shape to each other. The 3D Object Recognition service

can use engineered but also learned features in order to classify and recognize 3D

objects. This involves also semantic segmentation by fitting geometric primitives in

discrete geometric representations. This service will be used when it comes to recognize

the current assembly state in the cooperative assembly scenario. Additionally, we

provide the possibility of 2D image classification and training to detect and recognize

parts placed in the working environment.

4.2.1.1 Implementation Plan

Our service provides different classification methods. On the one hand, we provide

traditional learning approaches, like training a neural network. On the other hand, we

examine classification algorithms that bypass required preceded time-consuming

training process before usage needed by all learning approaches. This is especially

beneficial in industrial scenarios where we have small lot sizes and many context

switches. In these cases, it is not practical to spend a lot of time in training a

classification system. For that we use our so-called registration-based object recognition

service to classify the scanned part. The 2D image recognition is based on the open-

source library OpenCV. A so called Cascade classifier is trained with a set of annotated

positive and negative images and returns the recognized class.

Deliverable D3.2a

 H2020-EU 2.1.1. Ref 723909 - Page 29 / 48

4.2.2 3D Quality Control

Automatic Quality control by target/current comparison of point clouds with CAD

models relieves the user of doing manual check of dimensions after the completion of

an assembly. As input, the 3D Quality Control service receives annotated CAD files with

product manufacturing information (PMI) stating desired dimensions and tolerance

ranges. The service analyzes a passed scan for the given requirements. As a result, the

service provides the distance measurement with a note of measurement accuracy and

a statement whether the measurement result lies in the tolerance range.

4.2.2.1 Implementation Plan

For the 3D Quality Control service, we decided upon the .prt and .asm file format for

CAD annotations since they provide the functionality to store PMI besides geometry in

one file format. In detail, annotations provide the information where, meaning between

which elements, the measurement is taken, what distance is requested and what

tolerance is accepted. Or they describe via notes on the model additional

manufacturing information, e.g. which faces need to be greased during the assembly

process. To realize the geometry and PMI extraction we use a CAD converter and

importer based on the Spatial ACIS library [Spatial]. The extracted PMIs are then stored

in a leaner data format so that they can be easily accessed from our application

without loading the whole CAD file again. The extraction is usually performed in a pre-

processing step before the actual assembly process begins to avoid longer loading

time during the actual mounting. In the process of analyzing the point cloud, we

extract higher-order primitives and perform correspondence analysis by registering and

mapping detected primitives with CAD elements. Our developed 3D measurement

system then provides specialized algorithms to measure in-between different

representation formats (e.g. point cloud, parametric representations of planes, cones

etc.).

Deliverable D3.2a

 H2020-EU 2.1.1. Ref 723909 - Page 30 / 48

5 Implementation Plan of Smart Production Line Services

5.1 Local Services

5.1.1 Product Identification

The product identification service recognizes identification data, such as barcodes, QR

codes, and RFID (radio-frequency identification). The service sends requests to the

product tracking and tracing service and reports to machines or information systems.

This new digital memory platform is able to handle the data and to store all related

data inside hardware memory. Continuous synchronization represented by W3C Object

Memory Modelling allows users and machines to track and trace the product history

and status.

5.1.1.1 Implementation Plan

We are improving the functionality by shifting the hardware from RFID to a small-

embedded system. In the course of this shift, we integrate old-type ADOMe, based on

W3C Object Memory Modeling, with FIWARE components so that users and machines

can perform tracking and tracing. The second iteration prototype of this active product

memory was developed and tested inside the factory line, its components and their

relation to the overall structure is shown in Figure 9 and Figure 10.

5.1.1.2 Component Diagram

Figure 9 shows the components of the hardware for product identification service.

Figure 9: ADOMe second prototype with components

Deliverable D3.2a

 H2020-EU 2.1.1. Ref 723909 - Page 31 / 48

The components and their functions are:

1. RFID Reader/Writer to communicate with the product

2. Acceleration/Gyroscope sensor for dynamic product tracking and locating

3. Embedded hardware system running the IoT Communication Protocols and the

Ontology

4. E-Ink Display to dynamically display QR / Barcodes / Human readable

information

The usage of these components for the overall architecture of the product

identification service is shown in Figure 10.

Figure 10: Components for product identification

5.1.2 Object Detection

This service is used to detect objects in an image (for video streams: individual frames).

These objects have to be learned by a pre-trained residual convolutional neural

network (resCNN) in the pre-deployment training phase. The trained network is then

able to recognize the objects and their placement in an image and make them

recognizable to the user. In addition, this information can be further used in processes,

for example when the processing status of a product to be manufactured can be

identified on the basis of the image.

In the production line there are plenty of things that need to be controlled and

supported to boost up the speed of Human interaction. A Microsoft HoloLens, a pair of

mixed reality smart glasses developed and manufactured by Microsoft, is used in the

AUTOWARE system to add mixed reality technology to an industrial environment.

Object detection based on our specific training data is not only helpful for monitoring,

which is important for safety reasons, but also provides guidance in specific situations

and tasks like e.g. manual assembly.

Deliverable D3.2a

 H2020-EU 2.1.1. Ref 723909 - Page 32 / 48

5.1.2.1 Implementation Plan

The following pipeline for creating an object detection classifier was implemented:

 Manually create and upload training data in the form of .jpg or .png images of the

objects to be trained.

 Use of a binary program (labelImg) to create the bounding boxes and classes of

the objects to be recognized. These are created in xml form.

 Selection of the pre-trained deep network and the corresponding setup file. These

networks are based on the Tensorflow framework [Tensorflow] and use functions

from OpenCV [OpenCV].

 Conversion of the training and test images with the corresponding xml file into data

formats understandable for Tensorflow called “TFread”

 Train and evaluate the network using the Inference Graph

 Creating and outputting the model that can be applied locally

The following activities were selected for the implementation of the Finished Object

Recognition:

 Deployment of the model created through the above pipeline to a powerful

execution environment that is capable of massive parallel task executions (such as

a graphics processing unit (GPU)).

 Transferring images from a HoloLens and from other sensors in the environment to

the object detection service and return the result depending on which objects are

detected and give relevant Information depending on the context (assembly steps)

5.1.2.2 Component Diagram

Figure 11 shows the data processing workflow of the object detection service.

Figure 11: Data processing components for object detection

Deliverable D3.2a

 H2020-EU 2.1.1. Ref 723909 - Page 33 / 48

5.1.3 Non-Real-Time CPS Controller

This cyber-physical system (CPS) controller is used to collect non real-time critical data

and preprocess it for later use. The data collected is the information sent by the OPC

UA servers (Edge and Programmable Logic Controllers (PLC)) from the production

modules themselves and from the Hololens and Active Product Memory, which is

collected, pre-processed and forwarded for further analysis.

The edge server is supported by powerful hardware for parallel calculations (like a

GPU), which provides it with additional specialized capacities for demanding

calculations.

5.1.3.1 Implementation Plan

The system was implemented in several stages. First, access from the Edge Server to the

IoT Agent (see Figure 10) was established to enable information connection from the

Active Product Memory. A script was also created that accesses the Hololens' camera

and sends the image to the server. On the server, Tensorflow and OpenCV, together

with a Message Queuing Telemetry Transport (MQTT) protocol, were used to implement

the necessary connections and data analysis. The information and bounding boxes

created by the data evaluation were sent back to the SmartGlasses via a MQTT broker

implemented on the SmartGlasses and displayed in the field of view.

5.1.3.2 Component Diagram

Figure 12 shows the components for the interaction between the Edge Server and the

smart glasses.

Figure 12: Components of the Non-Real-Time CPS Control

5.1.4 Safety Service

The SmartFactoryKL production line is organized using individual plug & produce

modules. There are several safety concepts to consider such as operation modes,

Deliverable D3.2a

 H2020-EU 2.1.1. Ref 723909 - Page 34 / 48

module detection, and human detection. This service is responsible for keeping the

production line and human life safe e.g., stopping the production line if they are close

to the moving sections of robots. Internal module safety means as well as cameras in

the environment are monitored by this service.

3 cameras will be deployed in the SmartFactoryKL production line in order to detect the

location of human operators. The size of the human operator in the captured image is

used as reference to calculate the distance and the location. The digital twin records

the location of human operators. Any dangerous situation triggers an event, which is

connected with an alarm system through this safety service. This service then informs

persons standing close to the dangerous machine about the safety risk. The next step

would be to use human pose detection so that the safety system can predict possible

danger in advance.

5.1.4.1 Implementation Plan

The digital twin updates the location and the distance of each human operator with

the result of the object detection service. The result is provided by an edge server,

which is connected with the cameras deployed in the shop floor. A single human

operator is the target object of the rule-based danger detection. If the service detects

any potentially hazardous situation, e.g. when the production module is open during

operation, he displays an alarm message to the human operator when he/she is close

to the hazardous area. Rule-based alarm detection is implemented in this service with

area analysis and alarm interface.

5.1.5 Real-Time CPS Controller

In the field level of the AUTOWARE architecture, it may be necessary to make critical

decisions within a limited time. Therefore, controlling CPS in real-time, can be useful in

this scope. For example, in case of an emergency stop, the system is responsible to

keep a human safe. Additionally, even without emergency stop, the system should be

aware of human presence in the area where an emergency reaction may occur.

This kind of controller has to come to an exact-timed and correct decision, realized with

proper hardware and software design as well as a real-time capable operating system

(OS). For the implementation, it is necessary to have a hardware, which can handle

real-time tasks. The software components inside the hardware will virtualize the

processors and perform additional scheduling to respond to the requests on time. In

addition, it will monitor its resources to keep the Quality of Service (QoS) at maximum

and will offload the tasks when necessary. Figure 13Error! Reference source not found.

shows the required software components for such an Edge Server architecture.

Deliverable D3.2a

 H2020-EU 2.1.1. Ref 723909 - Page 35 / 48

An important extension in the integration of real-time critical data is the use of

communication protocols that can guarantee the timely arrival of the data. Time

Sensitive Networking (TSN) is a set of standards that can ensure the prioritization of data

packets and thus their arrival on the server. However, this requires the use of switches

and controllers that support these standards.

5.1.5.1 Implementation Plan

The implementation of the software components will be made using C, C++ or Java.

For the OS, a real-time patched or patchable Linux-based system will be used. The

hardware is expected to work compatibly with different hardware and is planned to be

plug’n’play with minimum adjustments to be ready for the service.

5.1.5.2 Component Diagram

Figure 13 shows the architectural composition of the Edge Server.

Figure 13: Real-Time capable server architecture

5.1.6 PLC and OPC-UA server:

The legacy PLC system needs a vender-library based client service because the OPC-

UA server could be an additional module, which needs to be integrated in some cases.

Retrofitting to legacy PLC is a practical approach in the deployment of actual shop-

floor environments. Advanced PLC controllers usually have an OPC-UA server

integrated. However, typically OPC-UA servers have to be installed additionally or need

to be developed.

5.1.6.1 Implementation Plan

The implementation covers the following two components:

Deliverable D3.2a

 H2020-EU 2.1.1. Ref 723909 - Page 36 / 48

 Topology manager: Many of the PLC vendors provide .NET based SDKs and

examples.

 OPC-UA server: Multi-vendor PLCs connect with each other via OPC-UA protocols.

Each production module uses different PLC systems and OPC-UA servers.

5.2 HPC Services

5.2.1 Product Tracking & Tracing

The product tracking and tracing service retrieves product data, which is stored in a

product database, and updates its status when any machine or device requests an

item detected at a specific location. The product database manages CAD, bill of

material, assembly instruction, process progress, and many more.

The message interface collects MQTT from production modules so that a centralized

update can guarantee consistence. The database interface communicates with the

central databased tracking. Additionally, this service also provides a search interface.

5.2.1.1 Implementation Plan

The implementation of this service requires the following components:

 .Net framework

 AMPQ and MQTT message

 MySQL database and SQL messages

5.2.2 Integration into the existing infrastructure

The current production line is already equipped with the IBM Integration BUS (IIB) and

the ProAlpha ERP system. An example for the IIB is shown in Figure 14.

Deliverable D3.2a

 H2020-EU 2.1.1. Ref 723909 - Page 37 / 48

Figure 14: Exemplary implementation of the Integration BUS

5.3 Edge Services

5.3.1 3D Factory Visualization

A digital twin of the production modules is used to animate all events and is visualized

on the shop floor dashboard. The 3D model engine of this visualization is deployed as

web server to synchronize the virtual model displayed in a web-interface to multiple-

users.

A front-end XML3D interface connects with the web server for replacing various

Dynamic LinK Libraries (DLL) libraries dynamically. This visualization interface is the

message interface DLL library of the webserver.

In the new version of the visualization software, the animations are encapsulated so

that individual services can be created and assigned to several modules. Uniform

animations for standardized operations (such as the assembly line, the opening/closing

of locks) can thus be better implemented.

5.3.1.1 Implementation Plan

The implementation of this service requires the following components:

 XML3D JavaScript library

 .NET framework

 FIWARE architecture

 MQTT message

Deliverable D3.2a

 H2020-EU 2.1.1. Ref 723909 - Page 38 / 48

In addition, modules must be created for individual animations. An example of such an

animation is shown in Figure 15 as a sequence of images to insert the bracket.

Figure 15: DyVisual visualizing tool

5.3.2 Process Optimization

This service generates alternative plans based on given rules to solve the problem of

machine breakdown or quality problems and performs a comparison between

different plans. The track and trace service provides the status of the real environment

to this service to update the initial condition of the optimization algorithm.

This service is foreseen to realize the lean manufacturing concept in module production

lines. In addition, it optimizes the production schedule with given order and sequences

by finding the bottleneck in the module in real-time. A capacity analysis algorithm

keeps calculating the resource utilization and flow status by collecting product data

from ADOMe (active digital memory). In addition, the algorithm can derive a whole

order estimation so that process planners can optimize the production schedule.

The Process Optimization Service communicates with the Active Product Memories. If

the processing sequence of the products to be processed is changed, a message is

sent to the affected products so that they can reorganize themselves.

5.3.2.1 Implementation Plan

This service is a Docker service deployed onto an edge server. A mathematical

algorithm runs on an EXCEL-based program and is updated by a message interface. It

is displayed on a web-based user interface, which remote users can access. We use

Node-red as platform to define message interfaces between external information

Deliverable D3.2a

 H2020-EU 2.1.1. Ref 723909 - Page 39 / 48

(described in MQTT), a simplex-method based algorithm (CPLEX) and the GUI web

page.

5.3.3 Training Object Model

This module is a service for improving the training data set of the object detection

service. It can contain images of human operators, products, work-in-process states

and machines or their parts.

The current production line assembles 3 parts for each business cardholder. To support

human operators who will assembly the cardholders manually, meaning each 3 parts of

3 different card holder models, the object model needs to update its training data with

new models and new products. This training data will contain different pictures of all

parts produced by the SmartFactoryKL production line and will be used for detecting

them in the human operator’s device. Each edge server focuses on a set of production

modules and needs to shift its training object model if the production line is rearranged.

The training object model is a Docker based storage, which can be replaced by other

ones.

5.3.3.1 Implementation Plan

The object model will be described in a TFread file format with 200 pictures for each

training set. The object model is filled with pictures of hand-gripped single parts

captured from various angles. This service is a Docker service, which can be accessed

from the object detection service and can replace the object model when a new

production module is needed. The implementation will be based on a binary program

file, which can be utilized to create the classes and bounding boxes of the images to

be classified.

Deliverable D3.2a

 H2020-EU 2.1.1. Ref 723909 - Page 40 / 48

6 Implementation Plan of Cognitive Automation Validation

Services

The implementation plan of the Cognitive Automation Validation services provides the

implementation of the services listed in Deliverable D3.2a Software Defined

Autonomous Service Platform development provided by GPflowOpt. These consist of

services related to the rapid reconfiguration of the cognitive vision systems but do not

encompass the related services concerning the deep learning based vision system, the

conveyor belt actuation, the image processing by the camera nor the robotic gripper.

However these are included in the instantiation service overview (Figure 16) and they

will be briefly discussed.

As a reminder the following services in GPflowOpt are provided:

1. Setting up a new Optimization experiment (deep learning training)

2. Adding data (new observations) to the Optimization experiment (the addition of

new labeled data)

3. Requesting the current optimal parameter setting according to the currently

observed data (= the next potentially best setting for the deep learning system).

Figure 16: Instantiation of services provided for Cognitive Automation Validation

Deliverable D3.2a

 H2020-EU 2.1.1. Ref 723909 - Page 41 / 48

6.1 Local Services

6.1.1 Trajectory planning, camera image processing and deep learning vision

detection

The local services are time-critical as they need to be performed on a fast moving

conveyor belt. In a first phase, the camera system continuously provides images directly

transformed by wire to a local processing unit containing the necessary hardware and

processing power (GPU, TPU - Tensor processing unit: an application specific integrated

circuit specifically used for neural network AI) to perform rapid detection based on a

deployed deep learning model. The system extracts the relevant coordinates based on

the automatic detection, translates these coordinates based on the speed of the

conveyor belt and transfers these by ROS or in JSON format to the gripper. At this

moment, no specific gripping points are calculated but instead the center of the

desired object is returned. The gripper is then actuated to move towards the

coordinates and will perform an action. Due to the limited speed of the currently

available gripper and the limited length of the conveyor belt, only services related for

demonstration purposes have been developed.

6.1.1.1 Implementation Plan

The implementation plan foresees the adoption of ROS or a standard JSON HTTP transfer

to communicate the gripping coordinates to the robotic gripper. As input for the deep

learning vision, commonly used file formats are used and transformed to images in the

RGB color model format and resized to the neural network size.

6.2 HPC Services

6.2.1 Deep learning vision learning services

The initial deep learning vision setup might require processing on HPC infrastructure

depending on the use case. As no particular deep learning architecture is put forth

within the context scope, any framework can be used. The model can then be

downloaded and reloaded locally or reconfigured in the edge node.

6.2.1.1 Implementation Plan

At this moment, Pytorch, Caffe, Tensorflow are the most commonly used technologies

to obtain such systems.

Deliverable D3.2a

 H2020-EU 2.1.1. Ref 723909 - Page 42 / 48

6.3 Edge Services

6.3.1 Rapid reconfiguration of deep learning based vision systems services

Rapid reconfiguration is performed in the edge computing facilities. For this the original

model parameters are reinitialized within limited bounds to accommodate a changing

environment on the production line. Given labeled examples of the new setting, the

operator starts a reconfiguration experiment based on the initial model. At the start,

several parameters are explored in a space filling design and the accuracy of the

obtained systems is compared. This is obtained by the new Optimization experiment

procedure of the GPflowOpt software installed on the edge node or by remote access

via the Representational State Transfer (REST) interface. In a next phase, the accuracy is

further increased by incremental model builds based on the feedback of the system

until the required accuracy is reached or allowed time slot has passed. Figure 17 shows

an exemplary case for the reconfiguration service. The x and y axis represent the value

assignment of two parameters.

Figure 17: Example of the reconfiguration service in process for a constrained problem.

Deliverable D3.2a

 H2020-EU 2.1.1. Ref 723909 - Page 43 / 48

The samples indicated as white dots represent validated systems. The top left plot

indicates the obtained accuracy, the top right one the feasible regions. The middle

plots show the regions where the most improvement is possible. While the bottom plot

combines the probability of improvement with the probably of feasibility.

6.3.1.1 Implementation Plan

The implementation plan foresees the communication between the deep learning

framework used and the GPflowOpt service. Both are available as Python 3.0

frameworks.

7 Implementation Plan of Collaborative Robotics Services

TEKNIKER implements a neutral facility, a collaborative work cell. The main outcome is

the development and integration of a mobile robotic platform services for logistics

operations. The services are based on the development of autonomous navigation

strategies and gasic algorithmic capabilities for environment perception, planning and

control of the mobile robotic platforms. Also, the coordination of navigation strategies

of mobile platform floats, necessary to implement logistic operations for supplying in

different production tasks.

In AUTOWARE these services will be integrated following the reference architecture (see

Figure 18). From the software architecture perspective, they will be designed and

implemented as ROS services. These services will be the basis

 to provide functionality to the neutral experimentation activity.

 to evaluate the implementation of AUTOWARE components.

In this document, the main functionalities and their integration in the general

architecture are described.

Deliverable D3.2a

 H2020-EU 2.1.1. Ref 723909 - Page 44 / 48

Figure 18: Instantiation of services provided for autonomous navigation of mobile robots

7.1 Local Services

7.1.1 Navigation system

The aim of this service is to provide the logistic basic moving abilities to the robotic

mobile platforms. It can be used to assign destinations to the mobile platform and

receive feedback about the task status. It is the basic service to build logistic solutions

at factory level.

ROS is the core framework for the navigation system. The navigation system will

calculate where the robotic platform is, both in absolute coordinates and relatively to a

local reference point. Then, for a given target position and based on the current

position, it will determine an optimal path. The Navigation module generates lower level

motion commands in order to follow the path while avoiding obstacles and re-planning

when necessary. These motion commands are sent to the Filed Devices layer. This

system is composed of several modules shown in Figure 18 that work together to

provide the localization and navigation capability (SLAM, Localization). The component

diagram is shown in Figure 19.

The following submodules of the navigation module are used:

 The localization module is responsible for the generation of precise position

information based on sensor information, inertial and odometer measurements. The

purpose of this module is to generate global localization information, which is based

on a global reference frame.

Deliverable D3.2a

 H2020-EU 2.1.1. Ref 723909 - Page 45 / 48

 Global Costmapper: Performs the generation of a global cost map in 2D. A cost

map is a grid in which each cell has an associated numeric value regarding the

presence of obstacles.

 Local Costmapper: Same as the global version but reduced to an area around the

current pose of the robot with a predefined and fixed size.

 Global Planner: Given a goal and a global cost map, it generates a path to follow

between the current position in the map and the goal, based on the cost values

associated with the traversable and not traversable areas.

 Local Planner: It generates motion commands to navigation on a plane, given a

path to follow and a local cost map.

7.1.1.1 Description, Input, Output

As input, the service receives:

 Destination to be reached by the mobile platform.

 The service returns the robot status in terms of: position, status (working, goal

reached, error), battery level.

7.1.1.2 Implementation Plan

The service is provided by a ROS node (module). The drivers manage the

communication between hardware devices and the modules of the upper layer (Field-

Work cell). The main purpose is to provide a hardware independent interface to the

upper level. This is achieved by implementing the drivers as ROS nodes that exchange

Standard ROS Messages.

7.1.1.3 Component Diagram

Figure 19: Component Diagram of the navigation module

Deliverable D3.2a

 H2020-EU 2.1.1. Ref 723909 - Page 46 / 48

7.2 Cloud Services

7.2.1 Standard input/output communications to ROS

Most of the modules are implemented using the ROS framework, so they will have

access to all ROS communication infrastructure. However, there will be some non-ROS

modules that need to communicate with ROS modules by other means.

The OPC UA mechanism is implemented to provide standard communication

mechanisms between work cell and Factory Level. The architecture implemented is

shown in Figure 20.

7.2.1.1 Implementation plan

The service is provided by a ROS node (module).

7.2.1.2 Component diagram

Figure 20: OPC-UA services implementation for Autonomous navigation

Deliverable D3.2a

 H2020-EU 2.1.1. Ref 723909 - Page 47 / 48

8 Summary and Outlook

This document is an update of the development plan described in the previous

deliverable D3.2a where a detailed overview of the development and implementation

plan of the services placed in the SDA-SP was given. The services provided by the SDA-

SP will be used for the implementation of the industrial and neutral use cases in WP5.

The service development partners of WP3 and TEKINKER are using different

infrastructures and platforms (ROS, CloudiFacturing and GPflowOpt) to develop and

provide their services to the AUTOWARE project. From a conceptual point of view, the

SDA-SP provides a generalized reference architecture for cognitive applications

spanning over different platforms to integrate and illustrate all AUTOWARE services.

The updated development plans of the services related to the implementation of the

main three WP3 assets (a reconfigurable robotic work cell, a mixed or dual reality

supported automation to implement an effective and flexible collaboration between

humans and robots, and a multi-stage production line) and two newly added

instantiations and development plans (cognitive automation validation and

collaborative robotics) are presented in more detail in this document.

The next deliverable (D3.3b, due in M30) will provide an overall update of the existing

reference implementations of the SDA-SP, taking into account the two more

instantiations of the SDA-SP reference architecture, and the description of the

integration strategy.

Deliverable D3.2a

 H2020-EU 2.1.1. Ref 723909 - Page 48 / 48

References

Gerkey, Brian (2017) "Why ROS 2.0?" ROS 2.0 Design, Online:

http://design.ros2.org/articles/why_ros2.html, Last Accessed 26.02.2019

Khronos Group (1992), OpenGL - Open Graphics Library , Online: https://www.

opengl.org/, Last Accessed 26.02.2019

Lamy, Jean-Baptiste (2017), “Owlready: Ontology-oriented programming in Python with

automatic classification and high level constructs for biomedical ontologies” Artificial

Intelligence in Medicine, Elsevier, 80, pp.11 - 28.

Merkel, Dirk (2014), "Docker: lightweight Linux containers for consistent development

and deployment” Linux Journal 2014, Issue 239

Musen, M.A. (2015), “The Protégé project: A look back and a look forward”. AI Matters.

Association of Computing Machinery Specific Interest Group in Artificial Intelligence,

1(4), Online: https://protege.stanford.edu/, Last Accessed 26.02.2019

OpenCV, Open Computer Vision Framework, Online: https://opencv.org/, Last

Accessed 26.02.2019

Spatial Corporation, 3D ACIS Modeler (ACIS), Online: https://www.spatial.com, Last

Accessed 26.02.2019

Tellez, Ricardo (2018) "On not using ROS for your robotics startup." Learn and Develop

for Robots Using ROS - The Construct, Online: http://www.theconstructsim.com/not-

using-ros-robotics-product/, Last Accessed 26.02.2019.

Tensorflow, Deep Learning Framework, Online: https://www.tensorflow.org/, Last

Accessed 26.02.2019

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4883684/

