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Executive Summary 

This deliverable is the updated version of deliverable D3.2a “AUTOWARE Software 

Defined Autonomous Service Platform development” which was submitted in M18. The 

document provides an overview of the development plan of the services that will be 

made available through the Software Defined Autonomous Service Platform (SDA-SP) 

and will be used for the implementation of the industrial and neutral use cases in WP5.   

The service development partners of WP3 in AUTOWARE are using different 

infrastructures and platforms (ROS, CloudiFacturing and GPflowOpt) to develop and 

provide their services to the AUTOWARE project. From the conceptual point of view the 

SDA-SP can be seen as a generalized reference architecture to realize cognitive 

applications and spans above individual platforms to integrate all AUTOWARE services 

in one architectural representation.  

Changes to the development plan of the services related to the implementation of the 

main three WP3 assets (a reconfigurable robotic work cell, a mixed or dual reality 

supported automation to implement an effective and flexible collaboration between 

humans and robots, and a multi-stage production line) are presented in this document.   

Additionally two new use cases are added: 

 Neutral experimentation infrastructure for intelligent automation applications for 

robotic industrial scenarios and 

 Industrial Cognitive Automation Validation  

This document describes how each one of these two developments instantiates the 

reference architecture of the SDA-SP in order to provide use-case specific reference 

implementations in the project.  

The next step will then be the revision of the reference implementation of the SDA-SP, 

which were documented in the deliverable D3.3a, taking into account the changes 

made on the development plan described in this document.  

 

Keywords 

Service platform, information systems in industrial production, cyber-physical production 

systems (CPPS), (re)configurability, reference architecture 
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1 Introduction 

The specification of the reference architecture for the Software Defined Autonomous 

Service Platform (SDA-SP) was introduced in Deliverable D3.1 and laid the foundation 

for the upcoming activities in WP3. In deliverable D3.2a this reference architecture was 

instantiated by the main three WP3 assets:  

(i) A reconfigurable robotic work cell,  

(ii) A dual reality supported automation framework as an enabler for human-robot 

collaboration and  

(iii) A multi-stage production line system. 

Their instantiations and their services were described in detail in addition to their 

development plans. Based on D3.1 and D3.2a, this document D3.2b provides an 

updated description of the development plan of the SDA-SP with its services and 

platforms. 

Evaluation of the individual pilots in WP5 and associated KPIs, especially the degree of 

fulfilment of the business and technical KPIs, gave an indication concerning potential 

improvements and further developments of the reference implementations of the SDA-

SP. Consequently, the updated version of the deliverable D3.2 provides an overall 

update of the existing reference implementations and additionally includes two more 

instantiations to complete the overall AUTOWARE approach. These reference 

implementations are linked with the following AUTOWARE use cases:  

(iv) Neutral experimentation infrastructure for intelligent automation applications for 

robotic industrial scenarios (owned by the AUTOWARE partner TEKNIKER); 

(v) Industrial Cognitive Automation Validation (owned by the AUTOWARE partners 

imec and RoboVision) 

Since the AUTOWARE architecture is open and thus extensible, the inclusion of two 

more use cases gives the opportunity to reveal a statement about the 

representativeness and applicability of the AUTOWARE architecture. 

1.1 Scope of the deliverable 

This deliverable is linked with the task T3.4 Reference implementation for the Software 

Defined Autonomous Service Platform (M13-M30, FhG lead). The task T3.4 is described in 

the Description of Work (DoW) as 

At the end of the first and final iteration of the developments, T3.4 will proceed 

with the integration of the different components into a reference 
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implementation of the Software Defined Autonomous Service Platform. This task 

will also implement the enablers and interfaces needed at this layer to connect 

the Software Defined Autonomous Service Platform with the Physical, 

Connectivity & Data Management framework in WP2 and the Open CPPS 

Ecosystem implemented in WP4. 

1.2 Relation to existing platforms 

The service development partners in WP3 are using different infrastructures and 

platforms to develop and provide their services to the AUTOWARE project.  

Functionalities are implemented as services which can then be combined and 

orchestrated to provide specific factory solutions. The services to be implemented will 

be mapped on the AUTOWARE architectural layers to create instantiations of the 

reference architecture. Each one of these individual reference implementations of the 

SDA-SP together with corresponding services in the different architectural layers will be 

used to commission the AUTOWARE pilots in WP5. 

Due to advances in recent EU research projects, the AUTOWARE project will use the 

more recent update of the CloudFlow technology environment. It is developed in the 

CloudiFacturing project, which is more focused on the manufacturing industry. 

 

Figure 1 depicts the individual instantiations and the different reference service 

implementation platforms. The existing platforms being used in WP3 are:  

 ROS (Robot Operating System) is used by JSI and TEKNIKER 

 CloudiFacturing is used by SFKL and FhG 

SFKL will provide core infrastructure components such as Workflow Manager or High 

Performance Computing (HPC) hardware for the AUTOWARE project. 

 GPflowOpt used by imec 
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Figure 1: Overview over all instantiations of the reference architecture and service 

implementations based on ROS, CloudiFacturing and GPflowOpt. 

1.3 Document Structure 

The document is structured as follows: Chapter 2 introduces and states the newest 

updates on the existing platforms mentioned above (ROS, CloudiFacturing and 

GPflowOpt) that are being used in WP3 to implement the AUTOWARE cognitive 

services. Chapters 3, 4 and 5 continue with dedicated implementation plans for the 

three main WP3 technology developments: a reconfigurable robotic work cell, dual 

reality supported automation, and a multi-stage production line by using digital 

product memory technologies.  

In addition two new use cases: Neutral experimentation infrastructure for intelligent 

automation applications for robotic industrial scenarios and industrial cognitive 

automation validation are described in chapter 6 and 7 with their instantiation of the 

SDA-SP reference architecture and the development plan for their services related to 
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cognitive automation validation and collaborative robotics. Chapter 8 gives an overall 

summary of this document and provides an outlook for future activities.   

1.4 Target audience 

This document is mainly intended for developers of the software defined autonomous 

service platform. For example, automation developers and integrators of the use cases 

should follow the directions given here. It also includes information for the providers of 

technical enablers (e.g. edge computing, deterministic communication), to support 

the design of enablers with appropriate characteristics. 
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2 Existing Software Defined Service Platforms 

This section gives an updated overview on the different software infrastructures that are 

currently being used in the AUTOWARE project to implement the services for the SDA-SP.  

2.1 ROS 

JSI instantiated the general AUTOWARE software architecture for the case of cyber 

physical production systems that deal with functional layers ranging from supervision 

and higher-level control down to hard real-time low control (and sensing) of devices 

that are involved in actual physical shop-level production. We are dealing with 

production processes involving manipulation of work pieces and/or tools. Advanced 

production of this type often – not always – involves robot manipulators, beside others 

specific production technology devices. We selected ROS, a set of tools and libraries 

that runs on top of an operating system. It is a kind of SDK (Software Development Kit) 

for robotic applications, thus a middleware software component. In AUTOWARE, we use 

it as a main robotic software building block/component to design a service based 

architecture, according to principles developed and described in the deliverable D3.1. 

It covers functionalities as hardware abstraction, device drivers, libraries, visualizers, 

message-passing, and package management. In our context, the most important 

single ROS’ characteristics is unified inter-process communication. 

In the previous release of this deliverable (D3.2a) we described the requirements of 

such software systems, explained the selection of ROS and gave an overview of its 

advantages and shortcomings. In this final delivery that is dealing with the plan to 

implement the various features of the robotic oriented service platform, we will describe 

the “institutional” ROS related community activities to advance “standard” or “first” ROS 

capabilities and address its shortcomings. 

2.1.1 ROS-industrial  

This is an initiative that bases on “standard” ROS distributions. It address predominantly 

the shortcomings that made ROS less attractive to industrial users in actual production 

environments, in contrast with its significant acceptance and use in the academia and 

in research [Gerkey, 2017, Tellez, 2018]. ROS-Industrial initiative is also an open-source 

project; its main result is a verified collection of software, the so called “ROS-Industrial 

repository”, that provides modules and libraries that are robust, reliable and simple 

enough, so that they can be used for actual production and manufacturing 

applications. 
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2.1.2 ROS 2 

This is the “next” ROS, conceived and developed by some individuals that were 

involved in the development of the “first” ROS and by a community that intensively uses 

it. With ROS 2, they address all shortcoming of ROS [Gerkey, 2017, Tellez, 2018]; the last 

ROS 2 version was released in December of 2018, the next one will be in June of 2019. 

There is a public roadmap of planned functionalities to be implemented, including 

porting of ROS packages to ROS 2. 

In chapter 3, we will describe the implementation plan for the Autonomous Robotic 

Work Cell Services. It initially describes the selection among ROS, ROS-Industrial and ROS 

2. The plan also position ROS inside the overall AUTOWARE service platform architecture. 

 

2.2 CloudiFacturing 

2.2.1 General Description 

Due to advances in recent EU research projects, the AUTOWARE project will use the 

more recent update of the CloudFlow technology environment as it is developed in the 

CloudiFacturing project. Aimed at the manufacturing industry, it includes the CloudFlow 

workflows (as described in more detail in Deliverable D3.2a) as a set of calculations, 

simulations, and analytics jobs for complex engineering and manufacturing tasks which 

are executed in a cloud environment as shown in Figure 2. 

 

Figure 2: CloudFlow workflow editor 

The manager allows arbitrary software to be encapsulated into web services or high-

performance computing (HPC) jobs, which can be arranged graphically into workflows 

and executed and monitored using a graphical web interface (as described below in 

Section 2.2.1). The advantage of using the CloudiFacturing solution in contrast to the 

pure CloudFlow solution lies in the improved technical interoperability of the Cloudflow 

components and the integration into a unified user interface.  
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This architecture includes the User Management component, the repository for 

executable artefacts and the workflow and application mediator as well as the data 

transfer and browsing system.  

These components can be described as the following: 

1. The User Management component provides a single entry point for the complete 

solution. Through this logging in point, it is possible to access all integrated 

technology stacks. 

2. The Repository for Executable Artefacts stores information on all applications, 

workflows etc. including metadata about the technology stacks an artifact is 

connected to. This allows users to view artefacts relying on different technology 

stacks in exactly the same way. 

3. The workflow and Application mediator acts as a unified execution interface for 

software artefacts registered in the repository. The mediator translates repository 

metadata of registered artefacts into execution calls to the different technology 

stacks. 

4. The Data Transfer and Browsing system allows data transfer between storages 

connected to different technology stacks. It makes it possible to create “meta 

artefacts” which consist of several artifacts from different technology stacks. 

2.2.1 Interface 

Based on the architecture described above, an input mask was created that makes it 

possible to deploy services in a workflow. This deployment has been simplified and is 

based on Docker [Merkel, 2014] (software that performs system-level virtualization) to 

containerize components. A screenshot to demonstrate how these services can be 

implemented is shown in Figure 3. 
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Figure 3: Improved Workflow User Interface 

 

2.3 GPflowOpt  

GPflowOpt is a powerful optimization framework, which distinguishes itself in three 

aspects from other more academic alternatives. First the fact that it builds on modern 

frameworks allowing for fast computation which is required in a manufacturing setting, 

reducing the changeover times by rapid reconfiguration of the artificial intelligence (AI) 

systems. Secondly, the quality of the implementation that reaches 99% code coverage 

and thirdly, the ease of use, allowing adoption for multiple scenarios without requiring 

expert knowledge.  GPflowOpt offers a representational state transfer application 

programming interface (RESTFull API) in which JSON (JavaScript Object Notation) 

objects are used as the standard communication protocol.   



Deliverable D3.2a 

 H2020-EU 2.1.1. Ref 723909 - Page 18 / 48 

 

With regard to D3.2a, the main work on GPflowOpt has been done integrating several 

development branches into the master branch to allow for further functionality in the 

core software. There have been no changes with regard to the services and API as 

discussed in deliverable D3.2a. In addition, we received several bug reports both 

internal and external which have been the main focus in the last months prior to this 

deliverable. 
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3 Implementation Plan of Autonomous Robotic Work Cell Services  

One of the JSI’s project tasks is to instantiate and implement the AUTOWARE software 

architecture, developed in other work packages, for the case of CPPS involving 

robotics. In the first WP3 deliverable, we defined the principles and structure of the 

software defined autonomous service platform; accordingly, JSI will implement a 

robotic work cell control system as part of a services-based framework. Also, JSI hosts, 

maintains and runs one of AUTOWARE’s neutral facilities, a reconfigurable robot cell, 

where all these principles will be used and demonstrated. The activities related mainly 

to the mechanical/hardware design and disposition have been mostly (but not 

exclusively) done in a concurrent ReconCell project; the design and implementation of 

appropriate service as a software architecture and the design and inclusion of specific 

enablers (part of the WP4) is being mainly done as part of AUTOWARE. 

3.1 Robotic services integration – deployment of ROS in a service based 

structure 

Due to the robotic nature of the CPPS we are targeting, we choose ROS as basic 

robotic middleware. We described its advantages in the previous deliverable report 

release. In chapter 2, we described two current additional initiatives, “ROS-industrial” 

and “ROS 2” that address the “first” ROS shortcomings for use in an industrial production 

environment. All three versions are currently maintained and being developed or 

updated. We investigated thoroughly all three versions for use in the AUTOWARE WP3 

tasks, taking into account the project’s resources and most importantly the project’s 

time schedule. In the following we recap our findings and technical solutions selected 

for our AUTOWARE implementation. 

 ROS and ROS 2 are both excellent as basic framework for task decomposition and 

distribution by supporting transparently inter-process and inter-computer messaging 

and other related functionalities. 

 ROS does not address the real-time and related lower level robot/device control 

requirements adequately out of the box. 

 “ROS-industrial” does in principle address real-time and control requirements but 

presently not enough for practical use; from the list of supported robots and 

functionalities in December 2018 (regarding ROS module functionalities for real-time 

robot control/sensing), we see that a limited number of commercial robots is 

supported; the type of robot control commands, e.g. trajectory control and 

force/torque control is even more limited. 
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 ROS 2 supports real-time requirements adequately. 

 ROS 2 development is presently (December 2018) concentrated and progressing 

very well on core functionalities; it is lagging in the transfer of useful functionality 

modules (to name some, “MoveIt!” and “Gazebo”) from ROS to ROS 2. 

Based on our assessment and findings, our plan regarding the implementation of 

robotics middleware in the software defined service platform is the following: 

 We will embrace “first” ROS as middleware; in this way, we can rely on existing 

functionality packages mentioned before; 

 We will develop specific packages for advanced functionalities, e.g. those related 

to automated re-configurability and cognitive capabilities; in doing this, we will stick 

to basic/standard ROS functionalities, so that the foreseen future porting from ROS 

to ROS 2 will be easier. 

 As ROS doesn’t support real-time control functionality at the level required for robot 

control, we will develop a dedicated solution to resolve this issue. 

3.2 Implementation plan to provide three scales integration 

It is one of WP3 goal to provide integration of CPSS at three scales (edge, cloud, and 

HPC). In this sense we planned our implementation according to following principles 

and design choices. 

 The main work cell control system will use ROS, thus it will run on a Linux-based 

operating system. The implementation will run on one or more PC-class computers. 

The number of computers and their power will be proportional to the requirements 

of the algorithms to be used for a specific production use-case application. Here 

we will leverage ROS capability to seamlessly distribute ROS nodes for an 

application on one or more computers as needed. 

 Based on the initial choices, we could also implement the main work cell control 

system on a number of the “fogNode”s, the fog/edge units provided as an enabler 

by an AUTOWARE partner. For the time being this is not possible due to the relatively 

lower computing power on available fogNode models (based on Intel Atom 

processor) than it is necessary by algorithms for JSI’s AUTOWARE use cases. 

However, as new versions with more powerful processors will be introduced, it will be 

possible to seamlessly move all or a part of the work cell control system on one or 

more of those “fogNode”s. 

 We established that ROS does not support hard real time that is necessary for the 

lower level control of manipulation-capable production hardware as robots, 

positioning devices, etc. (although it is supported in ROS 2 and we will eventually 

switch to). To achieve the control/sensing real-time functionality, we designed and 
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devised a so-called “server for real-time robot sensing and execution” (further: SLRT 

server), one per robot. The additional functionality we implemented in the SLRT 

server is production hardware abstraction. It functions as an interface between 

standard ROS node’s sensing and control commands and proprietary low level 

control of these devices (e.g. proprietary motor drives for robot joint motors). 

The SLRT software code is generated with our application preparation system for a 

specific production hardware. For example, in our use case applications, we 

generated and implemented a SLRT server for Universal Robots UR10, used in our 

work cell. We presently run them on a PC compatible computer. The SLRT could also 

run on the fogNode, provided it offers the possibility to boot the machine to the 

real-time kernel, embedded in the SLRT distribution. 

 To provide integration of the work cell local components with other distributed 

and/or remote components at the edge and in the Cloud scale, we will implement 

a ROS IoT (Internet of Things) communication layer. In our AUTOWARE 

implementation it will provide MQTT (Message Queuing Telemetry Transport) and 

OPC UA (OPC Unified Architecture) based connectivity of ROS nodes to external 

systems in the edge/fog or in the Cloud. The connectivity will be transparent, that is, 

the ROS nodes will seamlessly use the same mechanism for ROS-IoT communication 

as for “internal” ROS-ROS node communication. 

This mechanism could be used for communication with an external service or with 

an externally implemented application. In a typical CPPS application, this 

mechanism could be used for duties that in a traditional control scheme qualify as 

MES (Manufacturing Execution System) or ERP (Enterprise Resource Planning) 

functionalities; however, in contrast with traditional implementations, in AUTOWARE 

architecture they do not have to follow through the traditional hierarchical 

communication chain. 

 To provide integration at the HPC scale, we will conceive and implement a 

connection between local work cell components and a HPC level computing 

facility that is essentially an edge node providing HPC capable hardware and 

software. 

Due to the large amount of data that has to be exchanged with the HPC node in 

our use cases, we will use a suitable transfer mechanism (e.g. a IoT protocol as MQTT 

would not be suitable). 

As part of WP4, we will provide a demonstration of the implementation on the 

example of pre-training of deep learning networks. This is essential for cognitive 

functionalities, e.g. for those involving vision processing. 

As described in the first release of the D3.2 delivery, the implementation is planned in 

two steps: 
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 The first step is to decompose all functionalities into tasks with a modular structure 

while observing related principles from traditional software engineering like 

modularity, abstraction, anticipation of change, incremental development and 

consistency. 

 In the second step, we will implement modules with emphasis on service based 

operation. The main common building block will be the ROS. We will provide for 

connection with external platforms e.g. edge/fog, Cloud, and HPC. 

The two steps can be illustrated by the schemas in Figure 4. 

 

 

 

Figure 4: Architectural structure of the planned autonomous robotic work cell implementation. 

Above: functional view, below: SW and communication implementation view 



Deliverable D3.2a 

 H2020-EU 2.1.1. Ref 723909 - Page 23 / 48 

 

4 Implementation Plan of Dual Reality Management Services  

The implementation plan of the Dual Reality Management Services foresees to 

implement six high-level services, which were first described in Deliverable D3.2a 

Software Defined Autonomous Service Platform development. These high-level services 

consist of a combination of single services, which we listed and described in Deliverable 

D3.1 Reference Architecture for Software Defined Autonomous Service Platform. 

Descriptions and changes or updates to our services are listed in the following sections. 

Four services are instantiated as local services since they are constrained by real-time 

requirements or do not need external processing. Those are: 

 Cognitive Assembly Monitoring and Control  

 Dual Reality Control 

 3D Intention Visualization 

 Sensor Processing 

Two services can be outsourced to run on a cloud server. In this project, we make use 

of the CloudiFacturing platform to propagate our cloud services: 

 Object Recognition 

 3D Quality Control 

4.1 Local Services 

4.1.1 Cognitive Assembly Monitoring and Control 

The Cognitive Assembly Monitoring and Control service foresees to make existing 

product engineering and production planning data available for a secondary use, 

namely for cooperative assembly tasks between humans and robots. It can be used to 

perform automatic extraction of product engineering data (i.e. 3D CAD – computer 

aided design – files) and production planning data (i.e. structured textual data 

describing the manufacturing execution and the assembly process) for individualized 

products / prototypes from a PLM (Product Lifecycle Management) system. In addition, 

the service performs a consistent semantic mapping of product engineering and 

production planning data including 3D virtual models of tools and assembly parts on 

cognitive models. As a result, we get a semantic description of the assembly process 

incorporating the 3D representations of the assembly steps.  

These semantic models can then be queried to extract information about the assembly 

workflow and related geometry data.  
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4.1.1.1 Implementation Plan 

The implementation plan for the 

Assembly Monitoring and Control 

Service foresees to incorporate 

World Wide Web Consortium 

(W3C) standards to construct our 

domain models. We use the Web 

Ontology Language (OWL), 

which uses the Resource 

Description Framework (RDF) as 

basis, as knowledge 

representation language for 

creation and authoring of our 

semantic model. The semantic model is filled with information about the production 

planning data extracted from eXtensible Markup Language (.XML) or Siemens PLM 

Software XML format (.PLMXML) files and additional referenced geometry data (e.g. 

Jupiter Tesselation (.JT) or Computer-aided three-dimensional interactive application 

(.CATIA) files). Alternatively the semantic model can be easily viewed and edited 

manually with a variety of ontology editors, e.g. PROTÉGÉ [Musen, 2015] (Figure 5). To 

make use of the knowledge stored in the semantic model the service provides a query 

interface and rule engines. In D3.2a we listed RDF4J as framework to process the 

queries. However, we revised the query interface to work more seamlessly and more 

effective with our dual reality application based on C++. We decided upon owlready2 

[Lamy, 2017] which is an ontology programming interface. This open-Source software 

allows ontology-oriented programming in Python, and can be easily embedded in our 

application. 

 

4.1.2 Dual Reality Control 

The Dual Reality Control Service is able to model dynamic virtual environments and 

enrich these with virtualized physical production environments (Augmented Virtuality). 

Virtual environments and objects (e.g. assembly parts, production tools) are retrieved 

from the PLM System. The service receives information, which is captured by 2D/3D 

sensors, about the real world and transforms the input to virtualized real object 

representations. The service then connects real processes with virtual processes and 

thus allows a continuous synchronization between the real and virtual environment. It 

Figure 5: Visualization in PROTÉGÉ of an example of a 

semantic model  
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should be noted that virtual objects could also influence the behavior of real objects. 

By controlling the behavior of the real physical production environment, the service is 

able to react directly on virtual objects. As a result, the Dual Reality Control service 

creates an Augmented Virtual Environment Model containing objects from real und 

virtual environments. 

4.1.2.1 Implementation Plan 

To realize the service we developed a data structure to represent the Scene model, 

which is capable of storing and combining different data sources (CAD models and 

real world input, e.g. scan point clouds, meshes etc.) in one representation. A CAD 

loader and converter is incorporated to fill the scene with models. For the virtualization 

of objects from the real world, we process scans or images of the physical environment, 

perform detection and classification of objects based on the object recognition service 

and then translate virtualized objects into the scene model. This guarantees the 

continuous synchronization of real physical production environments and the virtual 

world. 

4.1.3 3D Intention Visualization 

3D intention visualization uses real and virtual world information for the visual 

communication of the entire assembly process and helps understanding the next steps 

in the cooperative assembly process by animating and simulating assembly instructions. 

In this way, users are well informed and able to control the entire assembly process. It 

also provides the possibility to the manufacturer to explore the whole assembly process 

by manually stepping through the manufacturing steps and viewing assembling 

information like part names and handling instructions. 

4.1.3.1 Implementation Plan 

The service will be integrated into an OpenGL-based application [Khronos Group, 1992] 

to visualize the collaborative working station and show animations and simulations of 

assembly instructions. In addition, a visualization of upcoming assembly steps is 

provided. Also an explorations mode is provided. The augmented virtual environment 

model serves as visualization input and the semantic model provides the information for 

the subsequent assembly steps. 

4.1.4 Sensor Processing 

Concerning the task of collaborative assembly of pneumatic cylinders, a sensor is used 

to support the human during the quality assessment, such as classifying the current 

assembly state and verifying that construction parts are correctly attached at the right 



Deliverable D3.2a 

 H2020-EU 2.1.1. Ref 723909 - Page 26 / 48 

 

place and within a given measurement threshold. This process relies on scanned 3D 

data, point clouds in particular. Depending on type and complexity of the 

measurement task, the point cloud must be provided in different quantity (e.g., 

covering larger or smaller parts of the assembly object) and precision (e.g., 1mm or 

0.05mm). To match these requirements while minimizing the scanning time, a 3D optical 

sensor based on structured laser light (line sectioning and space time analysis) is 

developed within this project. Figure 6 shows the design of the 3D laser scanner.  

 

 

Figure 6: Design of the Fraunhofer 3D laser scanner 

To ensure a high density of the resulting 3D point clouds and a low scanning overall 

time duration, the scanner operates at high frequency up to 300Hz. Hence, the low-

level data processing, such as the laser line sectioning, retrieval and fusion of camera 

frames into a 3D point cloud must be carried out at corresponding frequency. 

Therefore, this low-level scan processing service must be locally and synchronously 

executed on a control PC and has to be directly connected with the scanner 

hardware and the robotic positioning system. In addition to 3D point clouds, the 

scanner provides also focused 2D color images for special quality assessment tasks, 

such as scratch, burr or spill detection from milling and drilling tasks. 

Figure 7 shows the assembled 3D scanner with first results of a laser swipe on a target 

object producing a colored phase image.  

 

 

Figure 7: Fraunhofer 3D Laser Scanner with first result phase images on a target object 
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This single image is then further processed to form a 3D scan of a single surface patch 

and multiple scan patches are combined to the complete 3D model of the object. The 

accuracy of the laser scanner was further improved by an additional post processing 

step using a mesh matching algorithm for aligning single scans containing consistent 

surface patches of the target object. To achieve this we combined an iterative closest 

point approach with a method derived from mesh less deformation techniques called 

shape matching. Shape matching fits a geometry mesh into a deformed version and 

computes the necessary transformation matrix for a best match in a single step. 

The resulting algorithm is still iterative, however treating the found closest points as a 

“deformed” view of the points to be aligned allows to compute the transformation for 

the next iteration based on shape matching. This way the accuracy of the scanning 

process can be increased even in bad conditions. Figure 8 shows intermediate 

scanning results, left: without alignment, and right: after aligning single patch scans 

producing a more compact and accurate 3D model. 

 

Figure 8: Intermediate scans of a pneumatic cylinder 

The real-time sensor data is processed on-site forming a consistent 3D scan of the 

object that is then forwarded to other services, e.g., registration, classification and 

measurement, which can then potentially run remotely on the cloud. 

4.1.4.1 Implementation Plan 

The following implementation steps are carried out in successive order: 
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 Design of the 3D laser scanner, component selection, hardware interfacing and 

integration 

 Implementation of the scanner calibration method for estimation of intrinsic and 

extrinsic sensor parameters 

 Component for calibration of robotic positioning systems for scanners: hand-eye 

and turntable calibration 

 Higher level interfacing with central workflow management system 

 Improve scanning quality and robustness by advanced calibration and 3D 

matching algorithms 

4.2 Cloud Services based on CloudiFacturing 

4.2.1 Object Recognition 

Many existing shape representations describe actual shapes, with visual and material 

properties. However, applications often require enhanced shape properties. For 

example, shape structure information, such as segmentation or label information, can 

help to relate the parts of a shape to each other. The 3D Object Recognition service 

can use engineered but also learned features in order to classify and recognize 3D 

objects. This involves also semantic segmentation by fitting geometric primitives in 

discrete geometric representations. This service will be used when it comes to recognize 

the current assembly state in the cooperative assembly scenario. Additionally, we 

provide the possibility of 2D image classification and training to detect and recognize 

parts placed in the working environment. 

4.2.1.1 Implementation Plan 

Our service provides different classification methods. On the one hand, we provide 

traditional learning approaches, like training a neural network. On the other hand, we 

examine classification algorithms that bypass required preceded time-consuming 

training process before usage needed by all learning approaches. This is especially 

beneficial in industrial scenarios where we have small lot sizes and many context 

switches. In these cases, it is not practical to spend a lot of time in training a 

classification system. For that we use our so-called registration-based object recognition 

service to classify the scanned part. The 2D image recognition is based on the open-

source library OpenCV. A so called Cascade classifier is trained with a set of annotated 

positive and negative images and returns the recognized class. 
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4.2.2 3D Quality Control 

Automatic Quality control by target/current comparison of point clouds with CAD 

models relieves the user of doing manual check of dimensions after the completion of 

an assembly. As input, the 3D Quality Control service receives annotated CAD files with 

product manufacturing information (PMI) stating desired dimensions and tolerance 

ranges. The service analyzes a passed scan for the given requirements. As a result, the 

service provides the distance measurement with a note of measurement accuracy and 

a statement whether the measurement result lies in the tolerance range. 

4.2.2.1 Implementation Plan 

For the 3D Quality Control service, we decided upon the .prt and .asm file format for 

CAD annotations since they provide the functionality to store PMI besides geometry in 

one file format. In detail, annotations provide the information where, meaning between 

which elements, the measurement is taken, what distance is requested and what 

tolerance is accepted. Or they describe via notes on the model additional 

manufacturing information, e.g. which faces need to be greased during the assembly 

process. To realize the geometry and PMI extraction we use a CAD converter and 

importer based on the Spatial ACIS library [Spatial]. The extracted PMIs are then stored 

in a leaner data format so that they can be easily accessed from our application 

without loading the whole CAD file again. The extraction is usually performed in a pre-

processing step before the actual assembly process begins to avoid longer loading 

time during the actual mounting. In the process of analyzing the point cloud, we 

extract higher-order primitives and perform correspondence analysis by registering and 

mapping detected primitives with CAD elements. Our developed 3D measurement 

system then provides specialized algorithms to measure in-between different 

representation formats (e.g. point cloud, parametric representations of planes, cones 

etc.). 
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5 Implementation Plan of Smart Production Line Services 

5.1 Local Services 

5.1.1 Product Identification 

The product identification service recognizes identification data, such as barcodes, QR 

codes, and RFID (radio-frequency identification). The service sends requests to the 

product tracking and tracing service and reports to machines or information systems. 

This new digital memory platform is able to handle the data and to store all related 

data inside hardware memory. Continuous synchronization represented by W3C Object 

Memory Modelling allows users and machines to track and trace the product history 

and status. 

5.1.1.1 Implementation Plan 

We are improving the functionality by shifting the hardware from RFID to a small-

embedded system.  In the course of this shift, we integrate old-type ADOMe, based on 

W3C Object Memory Modeling, with FIWARE components so that users and machines 

can perform tracking and tracing. The second iteration prototype of this active product 

memory was developed and tested inside the factory line, its components and their 

relation to the overall structure is shown in Figure 9 and Figure 10. 

5.1.1.2 Component Diagram 

Figure 9 shows the components of the hardware for product identification service.  

 

Figure 9: ADOMe second prototype with components 
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The components and their functions are: 

1. RFID Reader/Writer to communicate with the product  

2. Acceleration/Gyroscope sensor for dynamic product tracking and locating 

3. Embedded hardware system running the IoT Communication Protocols and the 

Ontology 

4. E-Ink Display to dynamically display QR / Barcodes / Human readable 

information 

The usage of these components for the overall architecture of the product 

identification service is shown in Figure 10. 

 

Figure 10: Components for product identification 

  

5.1.2 Object Detection 

This service is used to detect objects in an image (for video streams: individual frames). 

These objects have to be learned by a pre-trained residual convolutional neural 

network (resCNN) in the pre-deployment training phase. The trained network is then 

able to recognize the objects and their placement in an image and make them 

recognizable to the user. In addition, this information can be further used in processes, 

for example when the processing status of a product to be manufactured can be 

identified on the basis of the image. 

In the production line there are plenty of things that need to be controlled and 

supported to boost up the speed of Human interaction. A Microsoft HoloLens, a pair of 

mixed reality smart glasses developed and manufactured by Microsoft, is used in the 

AUTOWARE system to add mixed reality technology to an industrial environment. 

Object detection based on our specific training data is not only helpful for monitoring, 

which is important for safety reasons, but also provides guidance in specific situations 

and tasks like e.g. manual assembly.  
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5.1.2.1 Implementation Plan 

The following pipeline for creating an object detection classifier was implemented: 

 Manually create and upload training data in the form of .jpg or .png images of the 

objects to be trained. 

 Use of a binary program (labelImg) to create the bounding boxes and classes of 

the objects to be recognized. These are created in xml form. 

 Selection of the pre-trained deep network and the corresponding setup file. These 

networks are based on the Tensorflow framework [Tensorflow] and use functions 

from OpenCV [OpenCV]. 

 Conversion of the training and test images with the corresponding xml file into data 

formats understandable for Tensorflow called “TFread” 

 Train and evaluate the network using the Inference Graph 

 Creating and outputting the model that can be applied locally 

The following activities were selected for the implementation of the Finished Object 

Recognition: 

 Deployment of the model created through the above pipeline to a powerful 

execution environment that is capable of massive parallel task executions (such as 

a graphics processing unit (GPU)). 

 Transferring images from a HoloLens and from other sensors in the environment to 

the object detection service and return the result depending on which objects are 

detected and give relevant Information depending on the context (assembly steps) 

5.1.2.2 Component Diagram 

Figure 11 shows the data processing workflow of the object detection service. 

 

Figure 11: Data processing components for object detection 
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5.1.3 Non-Real-Time CPS Controller 

This cyber-physical system (CPS) controller is used to collect non real-time critical data 

and preprocess it for later use. The data collected is the information sent by the OPC 

UA servers (Edge and Programmable Logic Controllers (PLC)) from the production 

modules themselves and from the Hololens and Active Product Memory, which is 

collected, pre-processed and forwarded for further analysis.  

The edge server is supported by powerful hardware for parallel calculations (like a 

GPU), which provides it with additional specialized capacities for demanding 

calculations. 

5.1.3.1 Implementation Plan 

The system was implemented in several stages. First, access from the Edge Server to the 

IoT Agent (see Figure 10) was established to enable information connection from the 

Active Product Memory. A script was also created that accesses the Hololens' camera 

and sends the image to the server. On the server, Tensorflow and OpenCV, together 

with a Message Queuing Telemetry Transport (MQTT) protocol, were used to implement 

the necessary connections and data analysis. The information and bounding boxes 

created by the data evaluation were sent back to the SmartGlasses via a MQTT broker 

implemented on the SmartGlasses and displayed in the field of view. 

5.1.3.2 Component Diagram 

Figure 12 shows the components for the interaction between the Edge Server and the 

smart glasses. 

 

Figure 12: Components of the Non-Real-Time CPS Control 

5.1.4 Safety Service 

The SmartFactoryKL production line is organized using individual plug & produce 

modules. There are several safety concepts to consider such as operation modes, 



Deliverable D3.2a 

 H2020-EU 2.1.1. Ref 723909 - Page 34 / 48 

 

module detection, and human detection. This service is responsible for keeping the 

production line and human life safe e.g., stopping the production line if they are close 

to the moving sections of robots. Internal module safety means as well as cameras in 

the environment are monitored by this service. 

3 cameras will be deployed in the SmartFactoryKL production line in order to detect the 

location of human operators. The size of the human operator in the captured image is 

used as reference to calculate the distance and the location. The digital twin records 

the location of human operators. Any dangerous situation triggers an event, which is 

connected with an alarm system through this safety service. This service then informs 

persons standing close to the dangerous machine about the safety risk. The next step 

would be to use human pose detection so that the safety system can predict possible 

danger in advance.  

5.1.4.1 Implementation Plan 

The digital twin updates the location and the distance of each human operator with 

the result of the object detection service. The result is provided by an edge server, 

which is connected with the cameras deployed in the shop floor. A single human 

operator is the target object of the rule-based danger detection. If the service detects 

any potentially hazardous situation, e.g. when the production module is open during 

operation, he displays an alarm message to the human operator when he/she is close 

to the hazardous area. Rule-based alarm detection is implemented in this service with 

area analysis and alarm interface.  

5.1.5 Real-Time CPS Controller 

In the field level of the AUTOWARE architecture, it may be necessary to make critical 

decisions within a limited time. Therefore, controlling CPS in real-time, can be useful in 

this scope. For example, in case of an emergency stop, the system is responsible to 

keep a human safe. Additionally, even without emergency stop, the system should be 

aware of human presence in the area where an emergency reaction may occur. 

This kind of controller has to come to an exact-timed and correct decision, realized with 

proper hardware and software design as well as a real-time capable operating system 

(OS). For the implementation, it is necessary to have a hardware, which can handle 

real-time tasks. The software components inside the hardware will virtualize the 

processors and perform additional scheduling to respond to the requests on time. In 

addition, it will monitor its resources to keep the Quality of Service (QoS) at maximum 

and will offload the tasks when necessary. Figure 13Error! Reference source not found. 

shows the required software components for such an Edge Server architecture. 
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An important extension in the integration of real-time critical data is the use of 

communication protocols that can guarantee the timely arrival of the data. Time 

Sensitive Networking (TSN) is a set of standards that can ensure the prioritization of data 

packets and thus their arrival on the server. However, this requires the use of switches 

and controllers that support these standards. 

5.1.5.1 Implementation Plan 

The implementation of the software components will be made using C, C++ or Java. 

For the OS, a real-time patched or patchable Linux-based system will be used. The 

hardware is expected to work compatibly with different hardware and is planned to be 

plug’n’play with minimum adjustments to be ready for the service. 

5.1.5.2 Component Diagram 

Figure 13 shows the architectural composition of the Edge Server. 

 

Figure 13: Real-Time capable server architecture 

5.1.6 PLC and OPC-UA server: 

The legacy PLC system needs a vender-library based client service because the OPC-

UA server could be an additional module, which needs to be integrated in some cases. 

Retrofitting to legacy PLC is a practical approach in the deployment of actual shop-

floor environments. Advanced PLC controllers usually have an OPC-UA server 

integrated. However, typically OPC-UA servers have to be installed additionally or need 

to be developed.  

5.1.6.1 Implementation Plan 

The implementation covers the following two components: 
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 Topology manager: Many of the PLC vendors provide .NET based SDKs and 

examples. 

 OPC-UA server: Multi-vendor PLCs connect with each other via OPC-UA protocols. 

Each production module uses different PLC systems and OPC-UA servers. 

5.2 HPC Services 

5.2.1 Product Tracking & Tracing 

The product tracking and tracing service retrieves product data, which is stored in a 

product database, and updates its status when any machine or device requests an 

item detected at a specific location. The product database manages CAD, bill of 

material, assembly instruction, process progress, and many more. 

The message interface collects MQTT from production modules so that a centralized 

update can guarantee consistence. The database interface communicates with the 

central databased tracking. Additionally, this service also provides a search interface. 

5.2.1.1 Implementation Plan 

The implementation of this service requires the following components: 

 .Net framework 

 AMPQ and MQTT message 

 MySQL database and SQL messages 

5.2.2 Integration into the existing infrastructure 

The current production line is already equipped with the IBM Integration BUS (IIB) and 

the ProAlpha ERP system. An example for the IIB is shown in Figure 14. 
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Figure 14: Exemplary implementation of the Integration BUS 

 

5.3 Edge Services 

5.3.1 3D Factory Visualization 

A digital twin of the production modules is used to animate all events and is visualized 

on the shop floor dashboard. The 3D model engine of this visualization is deployed as 

web server to synchronize the virtual model displayed in a web-interface to multiple-

users. 

A front-end XML3D interface connects with the web server for replacing various 

Dynamic LinK Libraries (DLL) libraries dynamically. This visualization interface is the 

message interface DLL library of the webserver. 

In the new version of the visualization software, the animations are encapsulated so 

that individual services can be created and assigned to several modules. Uniform 

animations for standardized operations (such as the assembly line, the opening/closing 

of locks) can thus be better implemented. 

5.3.1.1 Implementation Plan 

The implementation of this service requires the following components: 

 XML3D JavaScript library 

 .NET framework 

 FIWARE architecture 

 MQTT message  
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In addition, modules must be created for individual animations. An example of such an 

animation is shown in Figure 15 as a sequence of images to insert the bracket. 

 

Figure 15: DyVisual visualizing tool 

 

5.3.2 Process Optimization 

This service generates alternative plans based on given rules to solve the problem of 

machine breakdown or quality problems and performs a comparison between 

different plans. The track and trace service provides the status of the real environment 

to this service to update the initial condition of the optimization algorithm. 

This service is foreseen to realize the lean manufacturing concept in module production 

lines. In addition, it optimizes the production schedule with given order and sequences 

by finding the bottleneck in the module in real-time. A capacity analysis algorithm 

keeps calculating the resource utilization and flow status by collecting product data 

from ADOMe (active digital memory). In addition, the algorithm can derive a whole 

order estimation so that process planners can optimize the production schedule. 

The Process Optimization Service communicates with the Active Product Memories. If 

the processing sequence of the products to be processed is changed, a message is 

sent to the affected products so that they can reorganize themselves.  

5.3.2.1 Implementation Plan 

This service is a Docker service deployed onto an edge server. A mathematical 

algorithm runs on an EXCEL-based program and is updated by a message interface. It 

is displayed on a web-based user interface, which remote users can access. We use 

Node-red as platform to define message interfaces between external information 
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(described in MQTT), a simplex-method based algorithm (CPLEX) and the GUI web 

page. 

5.3.3 Training Object Model 

This module is a service for improving the training data set of the object detection 

service. It can contain images of human operators, products, work-in-process states 

and machines or their parts. 

The current production line assembles 3 parts for each business cardholder. To support 

human operators who will assembly the cardholders manually, meaning each 3 parts of 

3 different card holder models, the object model needs to update its training data with 

new models and new products. This training data will contain different pictures of all 

parts produced by the SmartFactoryKL production line and will be used for detecting 

them in the human operator’s device. Each edge server focuses on a set of production 

modules and needs to shift its training object model if the production line is rearranged. 

The training object model is a Docker based storage, which can be replaced by other 

ones.  

5.3.3.1 Implementation Plan 

The object model will be described in a TFread file format with 200 pictures for each 

training set. The object model is filled with pictures of hand-gripped single parts 

captured from various angles. This service is a Docker service, which can be accessed 

from the object detection service and can replace the object model when a new 

production module is needed. The implementation will be based on a binary program 

file, which can be utilized to create the classes and bounding boxes of the images to 

be classified.   
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6 Implementation Plan of Cognitive Automation Validation 

Services 

The implementation plan of the Cognitive Automation Validation services provides the 

implementation of the services listed in Deliverable D3.2a Software Defined 

Autonomous Service Platform development provided by GPflowOpt. These consist of 

services related to the rapid reconfiguration of the cognitive vision systems but do not 

encompass the related services concerning the deep learning based vision system, the 

conveyor belt actuation, the image processing by the camera nor the robotic gripper. 

However these are included in the instantiation service overview (Figure 16) and they 

will be briefly discussed. 

As a reminder the following services in GPflowOpt are provided: 

1. Setting up a new Optimization experiment (deep learning training) 

2. Adding data (new observations) to the Optimization experiment (the addition of 

new labeled data) 

3. Requesting the current optimal parameter setting according to the currently 

observed data (= the next potentially best setting for the deep learning system). 

 

Figure 16: Instantiation of services provided for Cognitive Automation Validation 
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6.1 Local Services 

6.1.1 Trajectory planning, camera image processing and deep learning vision 

detection 

The local services are time-critical as they need to be performed on a fast moving 

conveyor belt. In a first phase, the camera system continuously provides images directly 

transformed by wire to a local processing unit containing the necessary hardware and 

processing power (GPU, TPU - Tensor processing unit: an application specific integrated 

circuit specifically used for neural network AI) to perform rapid detection based on a 

deployed deep learning model. The system extracts the relevant coordinates based on 

the automatic detection, translates these coordinates based on the speed of the 

conveyor belt and transfers these by ROS or in JSON format to the gripper. At this 

moment, no specific gripping points are calculated but instead the center of the 

desired object is returned. The gripper is then actuated to move towards the 

coordinates and will perform an action. Due to the limited speed of the currently 

available gripper and the limited length of the conveyor belt, only services related for 

demonstration purposes have been developed. 

6.1.1.1 Implementation Plan 

The implementation plan foresees the adoption of ROS or a standard JSON HTTP transfer 

to communicate the gripping coordinates to the robotic gripper. As input for the deep 

learning vision, commonly used file formats are used and transformed to images in the 

RGB color model format and resized to the neural network size. 

6.2 HPC Services 

6.2.1 Deep learning vision learning services 

The initial deep learning vision setup might require processing on HPC infrastructure 

depending on the use case. As no particular deep learning architecture is put forth 

within the context scope, any framework can be used. The model can then be 

downloaded and reloaded locally or reconfigured in the edge node. 

6.2.1.1 Implementation Plan 

At this moment, Pytorch, Caffe, Tensorflow are the most commonly used technologies 

to obtain such systems.  
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6.3 Edge Services 

6.3.1 Rapid reconfiguration of deep learning based vision systems services 

Rapid reconfiguration is performed in the edge computing facilities.  For this the original 

model parameters are reinitialized within limited bounds to accommodate a changing 

environment on the production line. Given labeled examples of the new setting, the 

operator starts a reconfiguration experiment based on the initial model. At the start, 

several parameters are explored in a space filling design and the accuracy of the 

obtained systems is compared. This is obtained by the new Optimization experiment 

procedure of the GPflowOpt software installed on the edge node or by remote access 

via the Representational State Transfer (REST) interface. In a next phase, the accuracy is 

further increased by incremental model builds based on the feedback of the system 

until the required accuracy is reached or allowed time slot has passed. Figure 17 shows 

an exemplary case for the reconfiguration service. The x and y axis represent the value 

assignment of two parameters.  

 

Figure 17: Example of the reconfiguration service in process for a constrained problem. 
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The samples indicated as white dots represent validated systems. The top left plot 

indicates the obtained accuracy, the top right one the feasible regions. The middle 

plots show the regions where the most improvement is possible. While the bottom plot 

combines the probability of improvement with the probably of feasibility. 

6.3.1.1 Implementation Plan 

The implementation plan foresees the communication between the deep learning 

framework used and the GPflowOpt service. Both are available as Python 3.0 

frameworks. 

7 Implementation Plan of Collaborative Robotics Services 

TEKNIKER implements a neutral facility, a collaborative work cell. The main outcome is 

the development and integration of a mobile robotic platform services for logistics 

operations. The services are based on the development of autonomous navigation 

strategies and gasic algorithmic capabilities for environment perception, planning and 

control of the mobile robotic platforms. Also, the coordination of navigation strategies 

of mobile platform floats, necessary to implement logistic operations for supplying in 

different production tasks. 

In AUTOWARE these services will be integrated following the reference architecture (see 

Figure 18). From the software architecture perspective, they will be designed and 

implemented as ROS services. These services will be the basis 

 to provide functionality to the neutral experimentation activity. 

 to evaluate the implementation of AUTOWARE components. 

In this document, the main functionalities and their integration in the general 

architecture are described. 
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Figure 18: Instantiation of services provided for autonomous navigation of mobile robots 

 

7.1 Local Services 

7.1.1 Navigation system 

The aim of this service is to provide the logistic basic moving abilities to the robotic 

mobile platforms. It can be used to assign destinations to the mobile platform and 

receive feedback about the task status. It is the basic service to build logistic solutions 

at factory level. 

ROS is the core framework for the navigation system. The navigation system will 

calculate where the robotic platform is, both in absolute coordinates and relatively to a 

local reference point. Then, for a given target position and based on the current 

position, it will determine an optimal path. The Navigation module generates lower level 

motion commands in order to follow the path while avoiding obstacles and re-planning 

when necessary. These motion commands are sent to the Filed Devices layer. This 

system is composed of several modules shown in Figure 18 that work together to 

provide the localization and navigation capability (SLAM, Localization). The component 

diagram is shown in Figure 19. 

The following submodules of the navigation module are used: 

 The localization module is responsible for the generation of precise position 

information based on sensor information, inertial and odometer measurements. The 

purpose of this module is to generate global localization information, which is based 

on a global reference frame.  
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 Global Costmapper: Performs the generation of a global cost map in 2D. A cost 

map is a grid in which each cell has an associated numeric value regarding the 

presence of obstacles.  

 Local Costmapper: Same as the global version but reduced to an area around the 

current pose of the robot with a predefined and fixed size.  

 Global Planner: Given a goal and a global cost map, it generates a path to follow 

between the current position in the map and the goal, based on the cost values 

associated with the traversable and not traversable areas. 

 Local Planner: It generates motion commands to navigation on a plane, given a 

path to follow and a local cost map.  

7.1.1.1 Description, Input, Output 

As input, the service receives: 

 Destination to be reached by the mobile platform. 

 The service returns the robot status in terms of: position, status (working, goal 

reached, error), battery level. 

7.1.1.2 Implementation Plan 

The service is provided by a ROS node (module). The drivers manage the 

communication between hardware devices and the modules of the upper layer (Field-

Work cell). The main purpose is to provide a hardware independent interface to the 

upper level. This is achieved by implementing the drivers as ROS nodes that exchange 

Standard ROS Messages.  

7.1.1.3 Component Diagram 

 

Figure 19: Component Diagram of the navigation module 
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7.2 Cloud Services 

7.2.1 Standard input/output communications to ROS 

Most of the modules are implemented using the ROS framework, so they will have 

access to all ROS communication infrastructure. However, there will be some non-ROS 

modules that need to communicate with ROS modules by other means. 

The OPC UA mechanism is implemented to provide standard communication 

mechanisms between work cell and Factory Level. The architecture implemented is 

shown in Figure 20.  

7.2.1.1 Implementation plan 

The service is provided by a ROS node (module). 

7.2.1.2 Component diagram 

 

Figure 20: OPC-UA services implementation for Autonomous navigation 
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8 Summary and Outlook 

This document is an update of the development plan described in the previous 

deliverable D3.2a where a detailed overview of the development and implementation 

plan of the services placed in the SDA-SP was given. The services provided by the SDA-

SP will be used for the implementation of the industrial and neutral use cases in WP5.   

The service development partners of WP3 and TEKINKER are using different 

infrastructures and platforms (ROS, CloudiFacturing and GPflowOpt) to develop and 

provide their services to the AUTOWARE project. From a conceptual point of view, the 

SDA-SP provides a generalized reference architecture for cognitive applications 

spanning over different platforms to integrate and illustrate all AUTOWARE services.  

The updated development plans of the services related to the implementation of the 

main three WP3 assets (a reconfigurable robotic work cell, a mixed or dual reality 

supported automation to implement an effective and flexible collaboration between 

humans and robots, and a multi-stage production line) and two newly added 

instantiations and development plans (cognitive automation validation and 

collaborative robotics) are presented in more detail in this document.   

The next deliverable (D3.3b, due in M30) will provide an overall update of the existing 

reference implementations of the SDA-SP, taking into account the two more 

instantiations of the SDA-SP reference architecture, and the description of the 

integration strategy.  
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